
福山大学 大学教育センター 大学教育論叢 

第 4 号（2017 年度） 2018 年 3 月発行 

 

 

 

 

 

 

 

 

 

 

Differential Interactions of LAMP-’s Lysosome-targeting 

Signals Containing Various COOH-terminal Amino  

Acid Residues with a Medium Subunit  

of Adaptor Protein Complex-2 

 

 

 

 

 

 

 

 

 

Toshiyuki HATA, Hiroshi SAKANE, Misato UEDA, 

Misa MIYOSHI, Junzo HIROSE, Kenji AKASAKI 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

Differential Interactions of LAMP-1’s Lysosome-targeting 

Signals Containing Various COOH-terminal Amino  

Acid Residues with a Medium Subunit  

of Adaptor Protein Complex-2 
 

Toshiyuki HATA
＊ Hiroshi SAKANE

＊＊ Misato UEDA
＊＊＊ Misa MIYOSHI

＊＊＊ 

Junzo HIROSE
＊ Kenji AKASAKI

＊
 

 

種々の C 末端アミノ酸残基を有するリソソーム膜タンパク質 1 輸送シグナルと 

アダプタータンパク質 2 の中サブユニットとの異なる相互作用 
 

秦 季之＊  坂根 洋＊＊ 上田美里＊＊＊ 三好未紗＊＊＊ 廣瀬順造＊ 赤﨑健司＊ 

 

ABSTRACT 
Lysosome-associated membrane protein-1 (LAMP-1) is a type I membrane glycoprotein with a 

COOH-terminal lysosome-targeting signal peptide of G1YQTI5-COOH. This sequence is categorized 

as a tyrosine-based motif of GYXXΦ where Φ is a bulky hydrophobic amino acid residue. Lysosomal 

localization of LAMP-1 varies by changing the Φ amino acid residues. In this study, we conducted 

computer-based molecular modeling for structures of the COOH-terminal wild-type and mutant 

peptides (GYQTI, GYQTL, GYQTF, GYQTM, and GYQTV) complexed with a medium subunit of 

adaptor protein complex-2 (μ2 of AP-2), a key molecule in vesicular transport to endosomes and 

lysosomes. Tyr2 of all the peptides is critical for their rigid binding to μ2 by well fitted hydrogen bonds 

and hydrophobic interactions between Tyr2 and the surrounding amino acids of μ2. The Φ 

hydrophobic side chains of LAMP-1-derived COOH-terminal peptides are located exclusively within 

a hydrophobic pocket formed by five hydrophobic amino acid moieties on -sheets of μ2, whereas 

slight but significant differences were observed in the spatial position of the side chain of a Φ residue 

in the hydrophobic pocket, causing their differential affinities with μ2. These results could explain, at 

least in part, why the COOH-terminal variants of LAMP-1 show different lysosomal localization in 

late endosomes and lysosomes.  
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1. Introduction 

Lysosomes are membrane-limited intracellular organelles involved in endocytic and autophagic processes 

and possess an assortment of soluble acid-dependent hydrolases and a set of integral membrane glycoproteins.1-4) 

LAMP-1 and LAMP-2 are structurally similar to each other and account for a major portion of lysosomal 

membrane proteins.5-9) Both of the LAMPs consist of a large and highly glycosylated luminal domain, a single 

transmembrane domain and a short cytoplasmic tail at the COOH-terminal. Targeting of LAMP-1 and LAMP-2 

to lysosomes is dependent upon a tyrosine-based motif of the COOH-terminal cytoplasmic tail, which conforms 

to GYXXΦ.10-14) Although it was previously assumed that Φ would be any bulky hydrophobic amino acid residue 

for lysosomal localization, studies in the last two decades13,14) have shown that the lysosomal localization of 

LAMP-1 and LAMP-2 varies by changing hydrophobic amino acid residues in the Φ position and that COOH-

terminal isoleucine occurring in wild-type (WT) LAMP-1 is optimal for its efficient targeting to dense lysosomes.  

The tyrosine-based motif is reportedly bound to a medium chain of adaptor protein complex-2 (μ2 of AP-2), a key 

molecule in the vesicular transport of intrinsic lysosomal and internalized proteins to their final destinations.15-20)  

Deletion of μ2 from cells caused a significant decrease in the amounts of newly synthesized LAMP-1 transported 

to lysosomes.21) In consideration of all these findings, therefore, it is important to determine the ternary structures 

of its various COOH-terminal amino acid-containing tyrosine-based peptides complexed with μ2 in order to 

elucidate the exact role played by AP-2 in the lysosomal transport of LAMP-1  
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Notable successes have been achieved by computational methods that model the structures of proteins with 

sufficient accuracy to facilitate functional studies. 22) Because the crystal structure of the tyrosine-based signal 

binding domain of μ2 was solved (Fig. 1),17)  we herein conducted molecular modeling for LAMP-1’s intrinsic 

signal peptide and its COOH-terminal variants associated with μ2 and found that these peptides have differential 

interactions with μ2, providing a possible explanation for the COOH-terminus-dependent transportation of 

LAMP-1 to lysosomes. 

 

 

a) Structure              b) Interaction diagram 

Figure 1. X-ray crystal structure of the complex formed between TGN38 (DYQRLN) and the μ2 subunit 

of AP-2 and the interaction diagram of the TGN38 peptide with the μ2 subunit of AP-2. 

 

    μ2 subunit and TGN38 were shown as a stick and ball and stick model, respectively. The 

hydrogen bonds were indicated by dashed lines. The interaction diagram was drawn by LIGPLOT. 

The hydrogen bonds were indicated by dashed lines between the atoms involved, and the 

hydrophobic contacts were represented by an arc with spokes radiating toward the ligand atoms 

they contact. 

 

2. Materials and Methods 

(1) Homology modeling of the complexes between the GYQTΦ peptides and μ2. 
The molecular modeling was performed by a SWISS-MODEL homology modeling server23) using a rat μ2 

structure (PDB ID: 1BXX)17) as a template. The X-ray crystal structure of the 1BXX unfortunately lacked the 

protein conformation from Val221 to Gly237 in the rat μ2. The amino acid sequence of μ2 necessary for homology 

modeling was obtained from the UniProt database (ID: P84092 - AP2M1_RAT). 24) The range of residues that the 

SWISS-MODEL server23) generated was Ile156 to Cys435. The protonation states of these three-dimensional 

models were assigned by the PDB2PQR server.25,26) In Fig. 1, one water molecule forms two hydrogen bonds to 

an oxygen atom of the side chain of the Gln3, and to a nitrogen atom of the main chain of the Arg4. Since it is 

assumed that this water molecule is important to pack the TGN38 -derived peptide (DYQRLN) with Trp421, the 

water molecule hydrogen bonding to the GYQTΦ peptide is taken into account in the molecular modeling. The 

geometries of GYQTΦ (Φ= F, I, L, M and V) peptides with one water were modified on the basis of that of 

DYQRLN included in the crystal structure (PDB ID: 1BXX).17)  

 

(2) Energy minimization for the complex between the GYQTΦ peptides with one water molecule and μ2 
The energy minimizations of the complex between the GYQTΦ peptide and μ2 were carried out using the 

AMBER12 suite27) with the parm03 force field and a solvation effect by the generalized Born/surface area 

(GB/SA) method. All calculations were employed on an NEC Parallel Cluster System at the Research Center for 

Green Science, Fukuyama University. 

 

(3) Prediction of the binding constant between the GYQTΦ peptides and μ2 

The binding constant was predicted by using Autodock Vina28) software with the local search method. A 

docking grid with a size of 30Å x 30Å x 30Å was used. The center of the docking grid was the CG atom of Asp18 
of μ2 obtained by the energy minimization. The Autodock Vina presents the docking scores as the free energy of 

binding (ΔGb). The predicted binding constant (Kb) for all docking runs was calculated from the ΔGb value as 

follows: Kb=exp((–ΔGb × 1,000)/RT)), where R is 1.9872 cal∙K–1∙mol–1 and T  is 300 K. 
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3. Results 

(1) Molecular modeling of the complexes between the GYQTΦ peptides and μ2 

The molecular modeling of the complexes between GYQTΦ peptides and μ2 was performed with a SWISS-

MODEL homology modeling server using the rat μ2 subunit of the AP-2 structure (PDB ID: 1BXX)17) as a 

template. The geometries of the GYQTΦ (Φ=F, I, L, M, and V) peptides were produced on the basis of those of 

the TGN38-derived peptide (DYQRLN) included in the μ2 crystal structure (PDB ID: 1BXX), as shown in Fig. 

1. All energy minimizations of the complex structures between GYQTΦ peptides and μ2 were carried out as 

described in the Materials and Methods. The models of the complex structures between GYQTΦ peptides and μ2 

are shown in Fig. 2.29) Two-dimensional schematic representations30) of the interactions between GYQTΦ peptides 

and μ2 are provided in Fig. 3. 
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Figure 2.  Structures of GYQTΦ peptide docking with the μ2 subunit of AP-2. 

         The μ2 subunit and GYQTΦ peptide were shown as a stick and ball and stick model, 

respectively. The hydrogen bonds were indicated by dashed lines. 
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Figure 3.  Interactions diagrams between GYQTΦ and the μ2 subunit. 

     All figures are drawn by LIGPLOT. The hydrogen bonds were indicated by dashed lines 

between the atoms involved, and the hydrophobic contacts were represented by an arc with 

spokes radiating toward the ligand atoms they contact. 

 

All three-dimensional (3D) structures of the complexes between GYQTΦ peptides and μ2 closely 

resembled each other, and also closely resembled the 3D structures of the complexes between the TGN38-peptide 
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and μ2. Hydrophobic interactions were observed between the tyrosine ring and Phe174 and Arg423 of μ2 in all 

the complexes. The phenolic hydroxyl group of Tyr2 forms a hydrogen bond with the carboxylate of Asp176. 

Moreover, Tyr2 of the GYQTI and GYQTV peptides makes another side chain hydrogen bond to an N of Lys203 

of μ2. These hydrophobic interactions and hydrogen bonds around Tyr2 cause the rigid binding of GYQTΦ to μ2.  

In addition, the side chain of the Φ amino acid contributes to the binding of LAMP-1-derived peptides to μ2. The 

side chain of the Φ amino acid was located in the hydrophobic pocket formed by Leu173, Leu175, Val401, Leu404, 

and Val422 residues on -sheets of μ2, and the chain came into contact with Val401, Tyr403, Leu404, and the 

aliphatic portion of Arg402. 

We next superimposed only GYQTΦ peptides selected from their complexes with μ2 (Fig. 4). The main 

chains of the five GYQTΦ peptides overlapped very well, whereas the side chains were rotated relative to the α-

carbon of Φ depending on the amino acid residues.  

 

 
Figure 4. Superimposition of GYQTΦ peptides docking with the μ2 subunit of AP-2. 

 

 

(2) Binding affinity (ΔGb), binding constants (Kb), and buried surface areas between GYQTΦ peptides and 

μ2 
The binding affinity (ΔGb) and binding constants (Kb) of the complex between GYQTΦ peptides and μ2 

were computationally determined and are shown in Table 1. 

 
Table 1.  Binding affinities (ΔGb), binding constants (Kb) and buried solvent-excluded surface areas between GYQTΦ 

peptides and the μ2 subunit of AP-2   

GYQTΦ 

peptide 

 Binding 

Affinity 

ΔGb
 a) 

Binding 

constants 

Kb
b) at 300 K 

 Buried 

solvent- 

excluded 

surface 

area c) 

 Relative 

abundances 

(percentage of the 

total) of LAMP-1 

and the mutants in 

late endosomes 

and lysosomes d) 

 Interactions between 

LAMP-2b mutants and μ2 

subunit of AP-2 detected by 

the yeast two hybrid system 

e) 

  (kcal/mol) (L/mol)  (Å)  CT-

Sequence 

%  CT-

Sequence 
Interaction 

GYQTF  －5.56 11,150  194  GYQTF 4.5  GYQSF ++ 

GYQTI  －5.32 7,575  197  GYQTI 19  GYQSI + 

GYQTL  －5.13 5,461  184  GYQTL 11  GYQSL ++ 

GYQTV  －4.94 3,971  166  GYQTV 3.0  GYQSV － 

GYQTM  －4.55 2,080  142  GYQTM 4.2  GYQSM － 

a)  The binding affinity (ΔGb) was obtained using the Autodock Vina program. 

b)  Binding:  E + L = EL;  Kb = [EL]/[E][L]; ΔGb =－RT ln Kb; Kb = exp(－ΔGb /RT).   

c)  The values were obtained by the “measure buried” command in the UCSF Chimera program. 

d)  Akasaki K., Suenobu M., Mukaida M., Michihara A., Wada I. (2010) J. Biochem., Vol. 148, No. 6, 669-679. 

e)  Gough N. R., Zweifel M. E., Martinez-Augustin O., Aguilar R. C., Bonifacino J. S., Fambrough D. M. (1999) J. 

Cell. Sci., Vol. 112, No. 23, 4257-4269. The strengths of the interaction are indicated by the number of (+) 

symbols. A (－) symbol indicates the absence of any interaction. 
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The ΔGb values for GYQTF, GYQTI, GYQTL, GYQTM, and GYQTV were -5.56, -5.32, -5.13, -4.94, and 

-4.55 kcal/mol, respectively. The Kb values derived from the ΔGb for GYQTF, GYQTI, GYQTL, GYQTM, and 

GYQTV were 11,150, 7575, 5461, 3971, and 2180, respectively. The order of the binding affinities of the complex 

GYQTΦ (Φ=F, I, L, M and V) peptides and the μ2 subunit of AP-2 was Φ=F >> I > L > M >> V.  These binding 

affinities were in good agreement with those obtained from the yeast-two hybrid method, but their order was not 

necessarily coincident with the relative abundance of the WT and the COOH-terminal mutants of LAMP-1 in late 

endosomes and lysosomes.14) It was noteworthy that LAMP-1 containing GYQTI and GYQTL with moderate 

affinities for μ2 was localized at the highest levels in late endosomes and lysosomes (Table 1). These results 

suggested that the highest affinity GYQTF hampered dissociation from μ2 after the GYQTF-LAMP-1 mutant was 

included in transport vesicles, resulting in the lower rate of delivery of this mutant to late endosomes and 

lysosomes.  The buried solvent-excluded surface (BSES) areas26) for GYQTF, GYQTI, GYQTL, GYQTM, and 

GYQTV were 194, 197, 184, 166, and 142 Å2, respectively. The relationship between the binding affinity (ΔGb) 

and the buried solvent-excluded surface areas is shown in Fig. 5.  

 

 
 

Figure 5. Relationship between the binding affinities and buried solvent-excluded surface areas. 

The linear regressions for the binding affinity (ΔGb) and the buried solvent-excluded surface 

(BSES) areas were represented by the following equation. ΔGb = –0.016 x (BSES) – 2.275,   r2 

= 0.912. 

 

 

The binding affinities increased with the increase in the BSES areas. The linear regressions for the binding 

affinity (ΔGb) and the BSES areas are represented by the following equations. 

ΔGb = –0.016 x (BSES) – 2.275,   r2 = 0.912. 

The square of the correlation between the binding affinity and the buried solvent-excluded surface area was 

0.912. These results indicated that the differential affinities of GYQTΦ with μ2 were closely related to the different 

interactions of the Φ side chains with the side chains of the amino acid residues that constitute the pocket.  

 

4. Discussion 

X-ray crystal structure analysis of the complex between the TGN38 peptide (DYQRLN) and μ2 of AP-2 

showed that the hydroxyl group of Tyr2 formed a hydrogen bond with the oxygen atom of the Asp176 of μ2, and 

the side chain of the Φ residue (Leu5) of the TGN38 peptide was located in the hydrophobic pocket formed by 

Leu173, Leu175, Val401, Leu404, and Val422, as shown in Fig. 1. In this paper, the structures of the complex 

formed between the GYQTΦ (Φ=F, I, L, M and V) peptides and μ2 were predicted by molecular modeling. These 

predicted structures were very similar to those of the complex between the TGN38 peptide and μ2. Significant 

differences were observed in the 3D structure among the GYQTΦ (Φ=F, I, L, M and V) peptides; the side chains 

of Φ make subtle but significant differences at a position relative to the α-carbon of Φ. 

As shown in Table 1, the predicted binding affinities between the complex GYQTΦ (Φ=F, I, L, M, V) 

peptides and the μ2 subunit of AP-2 were Φ=F >> I > L > M >> V. The in vivo binding strength of μ2 to GYQTΦ 

Buried solvent excluded surface area (Å2)
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is generally assessed by a binding constant (Kb) calculated from a binding affinity (ΔGb). The Kb value of μ2 

subunit for GYQTI is 1.9 and 3.6 times higher than those for GYQTM and GYQTV, respectively, and 1.5 times 

lower that for GYQTF (Table 1, column 3). These differences could affect the efficient transport of LAMP-1 to 

late endosomes and lysosomes (Table 1, column 6). It is currently unknown whether the subtle difference in 

affinities between μ2 and GYQTΦ peptides has biological significance in cellular function. The optimal affinity 

of the LAMP-1’s tail with μ2 is seemingly present in the efficient transport of LAMP-1 to the lysosome to maintain 

an appropriate amount of LAMP-1 for the lysosomal function. The yeast two-hybrid assays distinguished the 

subtle difference in interactions between LAMP-1/LAMP-2b chimera targeting signals (GYQSΦ). The μ2 subunit 

of the AP-2 adaptor and their strengths were F(++), I(+), L(++), V(–), and M(–), respectively.13) The trends 

observed for the interaction between the GYQTΦ residue and μ2 were very similar to those for the interaction 

between the GYQSΦ residue and μ2. These results can be explained by the loss of the hydrophobic stacking 

interaction. Moreover, the binding affinity was correlated to the buried surface of the complex GYQTΦ peptides 

and μ2. It is known that the buried surface of the complex is related to the binding affinity.31) As mentioned above, 

since the difference of the 3D structure in GYQTΦ arises only from the Φ side chain of GYQTΦ peptides, the 

difference in the buried surface of the complex formed between GYQTΦ peptides and μ2 can be attributed to the 

difference in the surface area of the side chain of Φ. It is clear that the van der Waals interaction between the side 

chain of the Φ residue in the GYQTΦ peptides and the μ2 subunit of AP-2 plays an important role in the binding 

affinity. 
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