マウス乳癌 FM3A 細胞におけるエンドセリン－1 による DNA 合成の促進 —エンドセリンB受容体の関与—

西川由里子，螻川内（藤田）理恵，森田哲生

医学と生物学，156（6），369－373（2012）

Stimulation of DNA Synthesis in Mouse Mammary Tumor FM3A Cells Caused by Endothelin B Receptor－specific Endothelin－1 Analog

Yuriko Nishikawa，Rie Kerakawati－Fujita，and Tetsuo Morita

Abstract

Endothelin（ET）－1 in a vasoconstricting peptide and plays an important role in vascular homeostasis．Recently it has been reported that ET－ 1 is involved in the stimulation of tumor growth and proliferation；however，details of its effects in regard to breast cancer remain under investigation．In this study，we investigated the incorporation of $\left[{ }^{3} \mathrm{H}\right]$ thymidine into DNA，and changes of thymidine kinase activity in mouse mammary tumor FM3A cells treated with the endothelin B receptor－specific ET－1 analog；that is，Succinyl－ ［ Clu^{9} ， Ala 11,15 ］－ET－1（8－21）；ET－ $1_{\text {B．}}$ ．The stimulatory incorporation into DNA caused by ET－ 1_{B} was recognized．This stimulatory effect of ET－ 1_{B} was suppressed by a protein kinase（PK） C inhibitor，H－7．Moreover，thymidine kinase activity in the tumor cells treated with ET－1 ${ }_{\mathrm{B}}$ increased in a dose－dependent manner．The effect of ET－ 1_{B} on thymidine kinase activity was suppressed by H－7．These results suggest that ET－1 stimulates increases in DNA synthesis in the mammary tumor cell by activating the PKC－thymidine kinase signaling pathway through the endothelin B receptor．

[^0]
[^0]: 抄録 エンドセリン－1（ET－1）は血管収縮ペプチドとして見い出されたが，二種の受容体（ETA，ETB）が存在し，各々を介する種々の生理作用か認められている。そこで本研究では，マウス乳癌FM3A 細胞を用い，ET－1 によるETB 受容体を介する DNA 合成の変化と，DNA 合成に大きく寄与するチミジンキナーゼの挙動について検討した。本癌細胞を $\left.{ }^{3} \mathrm{H}\right]$ チミジン存在下， ET_{B} 受容体に特異的な $\mathrm{ET}-1 \mathrm{l}$（Succinyl－［Glu $\left.{ }^{9},{ }^{2} \mathrm{Ala}^{11,15}\right]$－ ET－1（8－21））との培養により，ET－ 1 B の濃度の増加とともに，DNAへの $\left[{ }^{3} \mathrm{H}\right]$ チミジンの取り込みが促進された。このET－18の作用は，プロテインキナーゼ（PK）C 阻害剤共存下で抑制された。一方，ET－1B 存在下培養した本癌細胞中のチミジンキナーゼ活性は， ET－ 1_{B} の濃度の増加とともに活性の上昇が認められた。このチミジンキナーゼ活性の上昇は，PKC 阻害剤共存下で抑制された。すなわち，ET－1 は ETB 受容体を介してPKC活性を上昇し，さらにチミジンキナーゼの活性化を伴ら経路に使って，乳癌細胞の増殖に寄与する可能性を示唆した。

