酵素反応速度論と計算化学の相補的利用による 酵素反応機構の解析

廣瀬順造、秦 季之、深澤加與子

Analysis of an enzymatic reaction mechanism by enzyme kinetics and computational chemistry

Junzo Hirose, Toshiyuki Hata, Kayoko M. Fukasawa

ABSTRACT

To get the information of the ternary complex (Michaelis complex) that consists of the substrate and the enzyme, the computational chemistry is very useful. The aminoacid sequence of the active site of leukotriene A4 hydrolase is very similar to that of aminopeptidase B. On the basis of the 3D structure of leukotriene A4 hydrolase, docking simulation of leukotriene A4 hydrolase with the substrate of aminopeptidase B showed the important residues involved in the expression of aminopeptidase B activity. These important residues involved in the recognition of the substrate binding of aminopeptidase B were determined by the point mutation. Latanoprost and timolol are used in the treatment of glaucoma. The effect of these drugs on the activity of human-carbonic anhydrase I and II were determined by the enzyme kinetics. Latanoprost is the inihibitor and timolol is the activator. Docking simulation of latanoprost and timolol with human-carbonic anhydrase I and II showed that latanoprost binds to the narrow active site cavity and that timolol binds to the entrance of the active site. The 3D structure modeling of rat-dipeptidylpeptidase III was performed by a Swiss-MODEL homology modeling server using human dipeptidylpeptidase III structure. The 3D structure model of catalytic domain of rat-dipeptidyl peptidase III shows that the carboxyl oxygen atoms of Glu⁵⁰⁷ and Glu⁵¹² are respectively engaged in the hydrogen bonds with the nitrogen atoms of the imidazole rings of His⁴⁵⁵ and His⁴⁵⁰, and these hydrogen bonds stabilize the coordination bond between the zinc ion and His⁴⁵⁵ or His⁴⁵⁰.

はじめに

もう20年も前になるが、廣瀬が福山大学工学部食品工学科に助教授として赴任したときに、 京都大学農学部から移ってこられ酵素反応速度論で高名な廣海啓太郎教授に頂いたテーマは 「銅イオンを持つビリルビン酸化酵素を使い、酵素と基質が形成するミカエリス中間体をなん とか分光学的に捉える事が出来ないか」と言うものであった。しかし、ビリビン酸化酵素の 反応は非常に早く、また基質の1つが0,というやっかいな気体であったので残念ながら、私 の力量ではミカエリス中間体を捉える事が出来なかった。この廣海先生から提案されたテー マは、廣海先生が福山大学を退職後もずっと私の心に残り続けた。ある生化学会で X 線結晶 解析法や分光法などで酵素反応機構を追求している有名な先生が、特別講演中に「やはり酵 素反応機構の反応中間体は最終的には計算化学の助けをもらわないと判りませんな~」と発 言され、私に深い印象を与えた。私はそのころ松本歯科大学の深澤先生と、部位特異的変異体・ 酵素反応速度論・錯体化学などの手法を組み合わせて研究を行っていたが、それに異分野の 計算化学を加えれば新たな切り口の研究が出来ると思いついた。そこで、薬学部の小野研究 室の秦先生の協力を得て、計算化学と生化学を相補的に利用し、酵素反応機構を解明する研 究を開始した。それから5年、その間に私自身も薬学部に移り、「酵素反応速度論と計算化学 を組み合わせた研究」は、現在執筆中のものを合わせれば6報の論文となり、これらの成果 の一部をまとめた総説(文献7))が現在審査中である。この総論は、この5年間の研究成果で ある文献1)~6をまとめたものである。

我々は、部位特異的変異酵素の酵素反応速度論から得られた結果と、計算化学で得られた 結果を相補的に比較検討し、酵素反応機構の解明に役立てようとしている。そして現在、次 の二つの方法を用いてミカエリスの反応中間体の構造の推定に役立てようとしている。

- ドッキングシミュレーション法による酵素反応中間体の構造と酵素反応速度論より得た結果の比較。
- 2. 計算化学による酵素及びその部位特異的変異体の立体構造予測

以上の論点で概説する。

- ドッキングシミュレーション法を用いた、酵素中の基質および阻害剤・活性化剤の結合 部位の探査
- 1-1 ドッキングシミュレーションによるアミノペプチダーゼB中の基質認識に関与する残基 の解明¹⁾

深澤らは、ラットのアミノペプチダーゼ B (ApB)の一次構造を明らかにし、この酵素が典 型的な亜鉛モチーフ配列 (HEXXH...E) を持つペプチダーゼである事を明らかにした⁸⁾。 我々と深澤らの共同研究により、ApB に含まれる1原子の亜鉛イオンが直接活性の発現に 関与している事を証明した⁹、そして ApB において亜鉛イオンに配位すると思われる残基を 部位特異的に変異させ、酵素活性・亜鉛量を測定することで、亜鉛イオンに配位する残基を 特定した⁹。亜鉛金属イオンの配位残基は、亜鉛モチーフ上の His³²⁴ と His³²⁸、そして亜鉛結 合モチーフから 19 残基はなれた Glu³⁴⁷ であった⁹。また、亜鉛結合モチーフの His³²⁴ の隣に 存在する Glu³²⁵ は、酵素活性の発現に必須である事を証明した^{1,9}。

アミノペプチダーゼBは、基質であるペプチドのアミノ末端を認識し、基質のアミノ末端 から1残基ずつペプチド結合を加水分解して切り離す酵素であり、アミノ末端がArgやLys などの正電荷を持つ残基に高い活性を示す事が知られている¹⁰⁾。ApBのX線結晶構造解析は いまだ行われておらず、ApBは基質であるペプチドのアミノ末端の正電荷をどの様に認識し、 また同時にアミノ末端の側鎖のArgやLysなどの正電荷をどの様に選択的に認識するのかは 不明であった。そこでApB中のどの残基が基質のアミノ末端の正電荷と側鎖上の正電荷を認 識するかを、部位特異的変異の手法を用いて明らかにしようとした。

我々は、基質であるペプチドのアミノ末端のアミノ基の正電荷と側鎖の正電荷を特異的に 認識するのが酵素中の負電荷を持った残基であると考えた。そして、それはすなわちカルボ キシル基を持った Glu か Asp であるはずであると予測した。しかし、ApB 中のどの Glu や Asp を部位特異的に変異させたら良いかは判らない。そこで、X 線結晶構造解析が行われて いるロイコトリエン A4 加水酵素(LTA4H)を参考にした¹¹⁾。LTA4H は、ApB とのアミノ酸

Rat-ApB	244 PRSRVWAEPCLIEAAKEEYNG-VIEEFLATGEKLFGP-YVWGRYDLLFMP
Rat-LTA4H	216 PRTLVWSEKEQVEKSAYEFSETESMLKIAEDLGGP-YVWGQYDLLVLP
	アミノ末端認識モチーフ 亜鉛イオン結合モチーフ 300 324 324 328
Rat-ApB	292 PSFPFGGMENPCLTFVTPCLLAGDRSLADVITHEISHSWFG
Rat-LTA4H	263 PSFPYGGMENPCLTFVTPTLLAGDKSLSNVIAHEISHSWTG
	1 271
Rat-ApB	333 NI VTNANWGEEWI NEGETMYAOPPTSTTLEGAAVTCLEAATCPALLPOHM
Rat-LTA4H	304 NI VTNKTWDHEWI NEGHTVYI ERHTCORI EGEKERHENAL GGWGELONSV
	and the second s
	405 ↓↓ ↓ ↓ ↓
Rat-ApB	383 DVSGEENPLNKLRVKIEPGVDPDDTYNETPYEKGYCEVSYLAHLVGDOFO
Rat-LTA4H	354 KTFGETHPFTKLVVDLTD-IDPDVAYSSVPYEKGFALLFYLEOLLGGPEI
	<u>۱</u> 375

Fig.1 Alignment of the rat ApB amino acid sequence with those of rat LTA4H. Mutated amino acid residues are denoted by arrows. The conserved motifs and tyrsyl residue in a mono-zinc aminopeptidase are shown by box on those amino acid sequences.

配列の相同性が 34 %であり¹²、Leukotriene A4 を加水する反応の他に、ApB と同じようなア ミノペプチダーゼ活性を示す事が知られるユニークな酵素である。そのユニークさゆえに、 活性に関与する残基が詳しく検討されている。そこで、LTA4H の立体構造を参考に、ApB 中 の部位特異的に変異する Glu(E) 残基及び Asp(D) 残基を決定した。ApB の一次構造を LTA4H の一次構造とともに Fig.1 に示した。 Fig. 1 において部位特異的変異をおこなった残基を黒の 矢印で示し、また種々のアミノペプチダーゼと共通するモチーフ配列を Box で囲って示した。

ApBのアミノ酸配列において、亜鉛結合モチーフを我々がすでに明らかにしており⁹、ま た種々のアミノペプチダーゼにおける部位特的変異の結果から、GGMENモチーフは、アミ ノ末端のアミノ基を認識する事が推定されていた¹³⁻¹⁵。ApB中のGlu(E)をGln(Q)に、Asp(D) をAsn(N)に変換した種々の部位特異的変異体から得られた酵素反応速度パラメターを Table1 に示した。*keal/Km*をそれぞれの部位特異的変異体で比較してみると、Glu³⁰⁰をGln に置 き換えたE300Qでは活性が消失し、Asp⁴⁰⁵をAsn に置き換えた部位特異的変異体 D405Nでは 活性が 1/30 まで低下した。それゆえ、ApB中のGlu³⁰⁰と Asp⁴⁰⁵の残基が基質の正電荷を認識 している可能性が高い事が分かった。Glu³⁰⁰は、他のアミノペプチダーゼの部位特異的変異 体の研究から、基質のアミノ末端を認識すると推定されるモチーフ配列 GXMEN 上に存在し ている。それゆえ、Glu³⁰⁰は基質のアミノ末端のアミノ基の正電荷を認識していると考えら れる。そうすると、Asp⁴⁰⁵は必然的に基質であるペプチドのアミノ末端のアミノ酸の側鎖に 存在する正電荷(Arg や Lys の側鎖の正電荷)を認識する残基である可能性がある。これら 部位特異的変異体の結果から、ApB中のGlu³⁰⁰が基質であるアミノ末端のアミノ基を認識し、 Asp⁴⁰⁵がアミノ末端のアミノ酸残基(Arg や Lys)の側鎖部分の正電荷を認識し、基質と結合し

	Km	Keat	k _{cat} /K _m
	(×10 ⁻⁵ M)	(s^{-1})	$(M^{-1}s^{-1})$
Wild-type	8.8±1.3	54.1±2.5	6.2×10 ⁵
E256Q	9.9±2.7	51.8±2.4	5.2×10 ⁵
E260Q	6.2±1.4	12.0±0.9	1.9×10 ⁵
E267Q	11.9±2.0	24.1±0.6	2.0×10^{5}
E268Q	6.4±0.6	11.7±0.5	1.8×10 ⁵
E300Q		$ND^{b)}$	
D315N	12.5±1.4	38.0±2.9	3.0×10 ⁵
E387Q	10.9±0.8	60.0±1.4	5.6×10 ⁵
E388Q	11.1±2.3	53.3±1.5	4.8×10^{5}
D405N	12.3±1.2	2.1±0.03	1.7×10^{4}
D406N	3.0±0.5	19.6±0.7	6.6×10 ⁵
E410Q	12.8±2.8	6.3±0.5	5.0×10^4
E414O	38.4±1.8	13.5±0.3	3.5×10^{4}

 Table 1
 Kinetic Parameters for Wild-Type and Mutated ApBs^a

^{a)} Data are means±SD of two separate experiments with duplicate determinations.

^{b)} not detectable.

ている事が推定された。

それゆえ、酵素のこの様な基質認識がより具体的にどの様に起こっているかを解明しよう と、X線結晶構造解析で立体構造が判明しており、ApBと同様なペプチダーゼ活性を示す LTA4Hを用いて、ApBの基質の中で最も比活性が高い Arg-β-naphtylamide (Arg-β-NA)を計 算化学でドッキングシミュレーションした¹⁶⁻¹⁸⁾。この結果をFig. 2 に示す。Fig. 2 において、 基質である Arg-β-NA のアミノ末端にあるアミノ基は、Glu²⁷¹ および Gln¹³⁶と水素結合してい た。LTA4H の Glu²⁷¹ は ApB の Glu³⁰⁰ に相当し (Fig.1 参照)、部位特異的変異体の酵素活性か ら予測した結果と一致した。また、基質である Arg-β-NA の Arg 側鎖のグアニジル基の正電 荷は Asp³⁷⁵ と相互作用しており、LTA4H の Asp³⁷⁵ は ApB の Asp⁴⁰⁵ に相当しており (Fig.1 参照)、 これも部位特異的変異体の酵素活性から予測した結果と一致した。また、Arg-β-NA と基質の 相互作用のドッキングシミュレーションの結果は、基質の加水分解されるペプチド結合部分 のカルボニルの酸素原子が亜鉛イオンに配位結合しており、多くの亜鉛ペプチダーゼの実験 から提唱されているようなミカエリス中間体の予想結果と一致した。この様に基質を酵素に ドッキングシミュレーションする方法は、より詳細に酵素に対する基質の結合の様子を明ら かにする事ができた。

Fig. 2 The most favorable interaction mode of Arginyl- β -naphythylamide with Leukotriene A4 hydrolase obtained from a docking simulation using by Autodock 3.0.5. The carbonyl group of Arg- β -NA is bound to the zinc ion. The interatomic distance between the oxygen of the carbonyl group and the zinc atom is 2.03 Å. The terminal amino group of Arg- β -NA is bound to Gln136 and Glu271. In addition, the guanidino group of Arg- β -NA is bound to Asp375 in LTA4H. Because the distances between nitrogen atoms of these groups in Arg- β -NA and corresponding oxygen atoms of amino acid residues in LTA4H are 2.73 ~ 2.78 Å, these interactions are hydrogen bond.

以上の部位特異的変異体の酵素活性の測定結果と、ApB 類似酵素のLTA4Hに対する基質 (Arg-β-NA)のドッキングシミュレーション結果から、ApB と基質である Arg-β-NA との結合 モデルを予測し Fig. 3 に示した。

Fig. 3 Models for the relationships between substrate and ApB. The guanidine in the substrate is bound to the negative charged Asp405 in the wild-type ApB (a) and the amino group in the substrate bound to Glu405 in the mutant D405E

1-2 銅置換アミノペプチダーゼ Bによる基質・酵素複合体の探査²⁾

Fig. 2 において、ロイコトリエン A4 加水酵素(LTA4H)へのドッキングシミュレーション の結果から、酵素中の金属イオンに基質のペプチド結合のカルボニル酸素原子が配位した状 態が得られた。それゆえ、ApB 中の亜鉛イオンを他の遷移金属イオンに置き換えたら、分光 法などで金属の配位構造を追跡し、ApB と基質が形成するミカエリス中間体の配位構造を明 らかにする事が出来ないかと考えた。そこで、ApB 中の亜鉛イオンをキレート化剤で取り除き、 Co²⁺ および Cu²⁺ イオンに置き換えた金属置換 ApB を作成した¹⁹⁻²⁰⁾。

Table 2 に示すように ApB 中の亜鉛イオンを各金属で置き換えた置換体は、それぞれ金属イ オンを酵素 1 分子に対しほぼ 1 原子を含有していた。また、Co(II)-ApB および Cu(II)-ApB の 基質 Arg-β-NA に対する酵素反応速度パラメータを Table 2 に示した。酵素中の亜鉛イオンを コバルトイオンに置き換えた Co(II)-ApB は天然の酵素の 79 % の酵素活性を示したが、銅イ オンで置き換えた Cu(II)-ApB は全く活性を示さなかった。ApB の亜鉛イオン結合モチーフは、 最も一般的な亜鉛ペプチダーゼのモチーフ配列 HEXXH...E であり、このモチーフ配列を持つ 多くの酵素は酵素中の亜鉛イオンを銅イオンに置き換えると活性が消失する事が知られてい る^{19,20)}。Co(II)-ApB および ApB の Km 値はほぼ等しく、金属イオンの影響をあまり受けなかっ た²¹⁻²²⁾。

	Km	kcat	$k_{ m cat}/K_{ m m}$	Specific actvity	metal contents
	(x10 ⁻⁴ M)	(min ⁻¹)	(x10 ⁷ M ⁻¹ min ⁻¹)	(Unit/mg)	(atom/ mole of protein)
ApB	2.67	3,186	1.193	12.5 (100%)	1.01
Co(II)-ApB	1.83	4,168	2.278	9.9 (79%)	0.93
Cu(II)-ApB	-	-	-	0.10 (1%)	0.80

Table 2 Kinetic parameters for Arg- β -NA and metal contents of various metallo- Aminopeptidases B at pH 7.4 (25 $^\circ$ C)

ApB 中の亜鉛イオンをコバルトイオンや銅イオンに置き換えた置換体において、金属イオンがどれほどアポー ApB に強く結合しているかを知るために、キレート化剤との競争反応を利用してアポー ApB と金属イオンとの解離定数を求めた。その値は Co²⁺ イオンでは 4.7x10⁻¹² M であり Zn²⁺ イオンでは 3.7 x 10⁻¹³ M であった。金属イオンは、いずれも強く酵素に結合している事が分かった。

Cu(II)-ApBが作成できたことにより、酵素中の金属の配位環境が簡単に電子スピン共鳴装置(EPR)の測定を用いて、明らかにする事ができる。そこで、Cu(II)-ApBのEPRスペクトルを測定し、これをFig4に示した。

Fig. 4A-(a)の Cu(II)-ApB の EPR スペクトルは多くの銅イオン置換ペプチダーゼと非常に似た EPR スペクトルを示した。Fig. 4A-(a)から得られたg値を、他の種々の Cu(II)-ペプチダーゼの値と共に Table 3 に示し比較した。これらのパラメータをみると、Cu(II)-ApB の配位構造 は酵素中の亜鉛イオンを銅イオンで置換した Thermolysin と非常に似ていた。Thermolysin 中の銅イオンは歪んだ4面体の配位構造を持つことがX線結晶構造解析で知られているので、ApB 中の銅イオンもこの様な配位構造を持つことが分かった。Fig. 4B-(a) に、Cu(II)-ApB の EPR スペクトルの 305 ~ 345mT の部分を拡大し詳しく測定した結果を示した。Fig. 4B-(a) に おいて矢印で示した5本の超微細構造のピークが見られる。この超微細構造は窒素原子の核スピンとの相互作用により出現するが、この結果より2個の窒素原子が銅イオンに配位して いる事が分かった。これは銅イオンに配位した His 残基の窒素原子によるものであり、我々が推定した ApB の亜鉛モチーフ配列の2 個の His 残基が、金属イオンに結合している事を支持していた。

我々は ApB に活性部位が類似している LTA4H に基質である Arg-β-NA をドッキングシミュ レーションし、基質のペプチド部分のカルボニル基の酸素原子が亜鉛イオンに結合する事を 明らかにした。そこで、Cu(II)-ApB に基質である Arg-β-NA が十二分に結合する条件(Kmの 数倍以上の基質濃度)で、Arg-β-NA を加えて Cu(II)-ApB に Arg-β-NA が結合するかどうかを EPR スペクトルを用いて検討した。基質を Km 値の約 5 倍の 1 mM を加えた時の Cu(II)-ApB

Fig. 4. The EPR spectra of Cu(II)-ApB and the substrate-adduct of Cu(II)-ApB in the presence of 1 mM Arg-β-NA at liquid nitrogen temperature in 0.05 M Tris-HCl buffer (0.075 M NaCl) at pH 7.4.

(A) The EPR spectrum between 245 and 345 mT. (a) the EPR spectrum of Cu(II)-ApB, (b) the EPR spectrum of the substrate-adduct of Cu(II)-ApB in the presence of 1 mM Arg-NA.

(B) The EPR spectrum between 295 and 345 mT. (a) the EPR spectrum of Cu(II)-ApB, (b) the EPR spectrum of the substrate-adduct of Cu(II)-ApB in the presence of 1 mM Arg-NA. The peak positions of the superfine structure in the perpendicular region of the EPR spectra of Cu(II)-ApB and the substrate-adduct of Cu(II)-Ap-B are represented as short lines in panel B.

の EPR スペクトルを Fig. 4A-(b) に示した。 基質が加わった時の EPR スペクトルは大きな 変化を示さず、非常に Cu(II)-ApB の EPR スペクトルに似ていた。この事より、基質が結合し ても大きな配位構造の変化が起こっていない事が分かった。基質を加えた Cu(II)-ApB の EPR スペクトルの 305 ~ 345mT 部分を拡大し、Fig. 4B-(b) に示した。基質が存在しない Cu(II)-ApB の EPR スペクトルと同じく、基質を加えた場合でも矢印で示したように 5 本の超微細分 裂を示した。それゆえ、基質が結合しても新たな基質の窒素原子は配位しない事が分かった。 以上の結果はドッキングシミュレーションで明らかになった基質の結合様式を支持していた。

	g⊥	g _{II}	AII
			$(x10^{-4} \text{ cm}^{-1})$
Cu(II)-ApB ^{a)}	2.06	2.27	157
$Cu(II)$ -ApB + Arg- β -NA ^{a)}	2.06	2.27	164
Cu(II)-dipeptidyl peptidase III ^{b)}	2.07	2.27	167
Cu(II)-Leu453-deleted-dipeptidyl peptidase III ^{c)}	2.06	2.27	161
Cu(II)-thermolysin ^{d)}	2.06	2.26	163
Cu(II)-carboxypeptidase A ^{e)}	2.05	2.33	115

Table 3 EPR Parameters of Cu(II)-Peptidases

^{a)} Reference 2) ^{b)} Reference 19) ^{c)} Reference 20) ^{d)} Reference 21) ^{c)} Reference 22)

1-3 緑内障治療薬による炭酸脱水酵素活性の阻害および活性化機構のドッキングシミュレー ションによる解明

緑内障に対して、一般的に用いられている炭酸脱水酵素阻害剤とチモロールあるいはラタ ノプロストを同時投与すると、ラタノプロストでは炭酸脱水酵素阻害薬と併用すると眼圧が 大きく低下するのに対し、チモロールは炭酸脱水酵素阻害剤と併用した場合には弱い眼圧低 下しか得られず、かえってチモロール単独の場合の方が、眼圧低下は大きいことが広島大学 病院の塚本医師・薬剤部の池田博士らによって臨床的に発見された。そこで、塚本・池田ら はラタノプロストやチモロールが炭酸脱水酵素の活性に影響を与えている可能性があると考 えた^{23,24)}。

廣瀬は長年亜鉛酵素である炭酸脱水酵素の活性反応機構を研究していた経緯もあり、広島 大学の池田・塚本先生達と「炭酸脱水酵素の酵素活性に対してチモロール及びラタノプロス トがどの様に影響を与えるか」という、臨床と基礎研究がジョイントした共同研究を行った。

1-3-1 ラタノプロストによる炭酸脱水酵素活性の阻害機構のドッキングシミュレーションに よる解明³⁾

炭酸脱水酵素 (HCA) 活性に対して、緑内障治療薬であるラタノプロスト (プロスタグラ ンジン F2α 関連物質) の影響を検討した。

炭酸脱水酵素の活性は、基質である二酸化炭素を溶かした水とpH 色素を溶かした弱い緩 衝液をストップトフローにより素早く混合し、次式に示すように二酸化炭素が炭酸となり解 離するプロトンによる pH 低下を色素の色調変化として測定した²⁵⁾。炭酸脱水酵素 (HCA) は、 人では HCA I と HCA II の二種類のアイソザイムが知られている。

> 炭酸脱水酵素が触媒 非常に速い CO₂ + H₂O → H₂CO₃ → HCO₃⁻ + H⁺

基質である二酸化炭素の濃度を変え、またラタノプロストの濃度を変化させて、酵素反応 速度論より、炭酸脱水酵素活性に対するラタノプロストの影響を検討し、これを Fig. 5 に示 した。Fig. 5A に示すように、ラタノプロストの濃度を上げると、酵素活性が低下することか らラタノプロストは炭酸脱水酵素の活性を阻害する事が分かった。ラタノプロストがどの様 な反応機構で炭酸脱水酵素の反応を阻害するかをより明確に知るために、(1)で示したミカエ リスーメンテンの式を変形し、(2) 式とした。この(2) 式に従い、酵素反応速度(v) と酵素反 応速度 / 基質濃度 (v – v/s プロット) を Fig. 5B にプロットした。

$$v = (V_{max} \cdot s)/(K_m + s) \quad (1)$$

 $v = -K_m (v/s) + V_{max}$ (2)

Fig. 5 v-s and v-v/s plots in Carbonic Anhydrase I (HCA I).

A. Relationship between v and s.

The enzyme reaction was monitored in 0.01 M HEPES buffer (pH 7,4, I=0.1(Na₂SO₄)) containing p-nitrophenol ($3x10^{-5}$ M) at 25 °C. The concentration of latanoprost free acid was as follows: -•-0 M ; - \triangle -7.6x10⁻⁵ M; -**u**-2.53x10⁻⁴ M.

B. v-v/s plots

The concentration of latanoprost free acid was as follows: -●- 0 M ; -▲- 7.6x10⁻⁵ M; -■- 2.53x10⁻⁴ M.

Fig. 5B において、*v* - *v*/s プロットは一定の傾きを持った直線になった。 それゆえに、阻害剤であるラタノプロストは *V*max のみを低下させ、*K*m には影響を与えない事が分かった。これはラタノプロストが典型的な非拮抗阻害剤である事を示しており、ラタノプロストは基質が結合しても結合しなくても酵素に同じ強さで結合し酵素活性を阻害する事が分かった。

ラタノプロストがどの様な強さで HCA I に結合するかを明らかにするために Dixon プロッ トを行い、その交点からラタノプロストの阻害定数は HCA I に対して 0.24 mM であった (Table 4)。 同様にヒト炭酸脱水酵素のアイソザイムである HCA II についてもラタノプロスト の阻害機構が調べられた。結果は HCA I と全く同じで非拮抗阻害を示した。得られた阻害定 数を Table 4 に示す。ラタノプロストは、非拮抗的に基質である二酸化炭素の加水反応を阻害

	K_i (mM)	
	Carbonic anhydrase I (HCA I)	Carbonic anhydrase II (HCA II)
Latanoprost free acid	0.24 (±0.11)	2.3 (±0.11)
	Noncompetitive	Noncompetitive

Table 4. Inhibition constants (*K*_i) and inhibition mechanism of latanoprost free acid studied in 0.01 M HEPES buffer (I=0.1) at 25 °C (\pm indicates standard deviations).

する事が明らかになった。

ラタノプロストはどの様に炭酸脱水酵素に結合し、活性を阻害するかを検討する目的で、 ラタノプロストを炭酸脱水酵素(HCAI)にドッキングシミュレーションした。HCAIにドッ キングシミュレーションした結果を、Fig. 6Aにリボンモデルで、Fig 6Bにスペースフィルモ デルで示した²⁶⁻²⁹⁾。ラタノプロストは炭酸脱水酵素の活性部位に通じる狭い cavity にしっか りとはまり込み、ラタノプロストのカルボキシル基が活性部位に存在する亜鉛イオンに配位 結合していた。このように、ラタノプロストは基質である二酸化炭素を活性部位に近づけさ せないようにして、炭酸脱水酵素の活性を阻害する事が分かった。種々の陰イオンは HCAの 亜鉛イオンに結合し非拮抗的に活性を阻害する。そして、陰イオンと基質は同時に亜鉛イオ ンに結合し、五配位状態をとると考えられている。それゆえ、ラタノプロストも他の陰イオ

Fig. 6 Autodock simulation of latanoprost free acid-HCA I complex

A: Most favorable interaction mode latanoprost free acid with HCA I (PDB code:1HUH) obtained from a docking simulation using AutoDock 3.0.5. The Zn^{2+} ion and latanoprost are shown as a sphere and a ball and stick model, respectively. The α -helix and the β -sheet regions are shown as a ribbon model. In addition, the carbonyl group of latanoprost free acid is bound to Zn^{2+} ion in HCA I.

B: Most favorable interaction mode latanoprost free acid with HCA I. HCA I and latanoprost are shown as a sphere model and a ball-stick model, respectively. Latanoprost locates at the narrow cavity of the active site in HCA I.

ンと同様な配位構造をとると思われる。HCAIIに対してもラタノプロストをドッキングシミュ レーションしたが³⁰⁾、ほぼ HCAIと同様な結果が得られた。以上の結果からラタノプロスト は炭酸脱水酵素を阻害するため、臨床において炭酸脱水酵素阻害剤とラタノプロストを同時 投与した場合では、協同的に働き緑内障の眼圧を大きく下げるものと思われる。

1-3-2 チモロールによる炭酸脱水酵素活性の活性化機構のドッキングシミュレーションによ る解明⁴⁾

炭酸脱水酵素に対して、緑内障治療薬であるチモロール(交感神経β遮断剤)の影響を検 討した。炭酸脱水酵素の活性は、基質である炭酸水とpH 色素が溶かされた緩衝作用が弱い 緩衝液を用い、二酸化炭素が炭酸になって解離するプロトンによるpH 変化をpH 色素の色調 変化としてストップトフローにより追跡する事で測定した²⁵⁾。

基質である二酸化炭素の濃度を一定に保ったままチモロール濃度を変化させ、炭酸脱水酵素活性に対するチモロールの影響を検討した。その結果を Fig. 7 に示した。

Fig.7 において、炭酸脱水酵素 HCA I と HCA II 活性はチモロールによって賦活化されるこ とが分かった。これはラタノプロストが酵素活性を阻害するのとは全く逆の結果であった。 この結果を確かめるために、HCA I に対して基質の濃度とチモロールの濃度を同時に変化さ せた。そして、(1) 式および (2) 式に従い、v - s プロット, v - v/s プロットを取った。その結果を Fig. 8 に示した。Fig. 8A において、チモロールの濃度を上げると酵素活性が上昇し、それゆえチモロールは炭酸脱水酵素の活性を賦活化することが明らかとなった。Fig. 8B の <math>v- $v/s プロットは一定の傾きを持った直線になり、チモロールの濃度が濃くなるにつれて <math>V_{max}$

Fig. 7 The activation of HCA I and II hydration activities in the presence of various concentrations of timolol.

The relative activity of HCA I or HCA II in the presence of timolol compared to that in the absence of timolol (((v in the presence of timolol)/(v in the absence of timolol))x100%) is plotted against the concentrations of timolol.

-•- HCAI, -▲- HCAII

Fig. 8 v-s and v-v/s plots in HCA I and HCA II.

A. Relationship between v and s in HCA I.

The enzyme reaction was monitored in 0.01 M HEPES buffer (pH 7.4, I=0.1(Na₂SO₄)) containing phenol red ($3x10^{-5}$ M) at 25°C. The concentrations of timolol hemihydrate were as follows: -•- 0 M ; -**=**- 1.5x10⁻³ M; -****- 3.0x10⁻³ M.

B. v-v/s plots in HCA I

The concentrations of timolol hemihydrate were as follows: -●- 0 M ; -■- 1.5x10⁻³ M; -▲- 3.0x10⁻³ M.

のみが大きくなる事を示し、Kmには全く影響を与えない事が分かった。それゆえに、チモロールは炭酸脱水酵素に対して非拮抗的な賦活化剤である事を示していた。同様な実験をHCA II に対しても行い、同じ結果が得られたのでこれらの現象を反応速度論的に導くためにチモロールの酵素に対する反応を次の Scheme 1 のように考えた³¹⁻³²。

Scheme 1 において E は酵素を、S は基質を、A は賦活化剤であるチモロールを、P は産生物をそれぞれ示す。酵素・基質複合体である ES が産生物に分解される速度定数 (k+2) は、酵素・ 基質・賦活化剤の複合体である ESA が産生物に分解される速度定数 (αk+2) とは異なっている。 Scheme 1 においてαは、1.0 より大きいと考えられる。すなわちチモロールが酵素に結合す

Scheme 1. The activation mechanism of timolol for HCA hydration activity. E, S, P, and A are the enzyme, the substrate, the product and the activator, respectively. ると、結合していないものより素早く基質を産生物に分解する事を意味する。

Sheme 1 において、各平衡状態が素早く成立し、*Ks'K*_A が *KsK*_A' に等しく、*K*_A が *K*_A' に等しい場合には次の式が成立する³¹⁻³²。

$$v = \frac{Vmax \frac{(1+\alpha[A]/K_A)}{(1+[A]/K_A)}s}{s+K_m}$$
(3)

この式は、チモロールである賦活化物質 A を加えると V_{max} は変化するが、 K_m は全く変化 しない事を示している。それゆえこの理論式は Fig. 8A、8Bの実験事実をよく説明できる事 が分かった。この(3) 式を Fig. 8A の結果に適合させて計算し、 α とチモロールの解離定数 K_A をもとめた。その値は HCA I では、 $K_A(0.012 \text{ M}), \alpha$ (5.7) となり、HCA II では、 $K_A(0.0091 \text{ M}), \alpha$ (4.0) となった。HCA I および HCA II のいずれにおいても、酵素・基質・チモロール複合体 が酵素・基質複合体より 4 ~ 6 倍速く産出物を生じる事が分かった。

チモロールはどの様に炭酸脱水酵素に結合し酵素活性を賦活化するかを検討する目的で、 チモロールを炭酸脱水酵素(HCA I)にドッキングシミュレーションした。その結果を Fig. 9 に示す。チモロールは炭酸脱水酵素の活性部位の cavity のすぐ外側に存在する His⁶⁴ 残基の近 くに結合し、炭酸脱水酵素が酵素活性を発現するさいに、His⁶⁴ 残基が外部の水分子にプロト ンを手渡す律速反応段階をチモロールが手助けする形で、炭酸脱水酵素の酵素活性を賦活化 する事が分かった。

炭酸脱水酵素 HCAI の活性をチモロールが賦活化するメカニズムを Fig. 10 に示した。亜鉛 イオンに結合した水分子は亜鉛イオンの Lewis の酸としての性質により活性化されプロトン

Fig. 9 Autodock simulation of timolol acid-HCA I complex

A: Most favorable interaction mode latanoprost free acid with HCA I (PDB code:1HUH) obtained from a docking simulation using AutoDock 3.0.5. The Zn^{2+} ion and timolol are shown as a sphere and a ball-stick model, respectively. The α -helix and the β -sheet regions are shown as a ribbon model. In addition, timolo is nearly bound to His 64 which is the proton shuttle residue in HCA I. B: Most favorable interaction mode timolol with HCA I. HCA I and timolol are shown as a sphere model and a ball-stick model. Timolol locates at the entrance of the active site in HCA. を遊離する。亜鉛イオンの第五番目に配位する二酸化炭素に、水分子からプロトンが取り去 られた水酸基が攻撃し、炭酸イオンとなり産生物となる。水分子から遊離したプロトンは、 活性部位の残基に手渡され、最終的に His⁶⁴ に結合する。His⁶⁴ に結合したプロトンは外部に ある水分子や緩衝液中の塩基に渡されるが、この反応が HCA の反応の律速段階であると言わ れている。チモロールが存在すると His⁶⁴ の近くに結合し、チモロールは塩基としての性質を 持つことから、プロトンを素早く受け取り酵素活性を賦活化すると思われる³³⁻³⁷⁾。

以上の結果より、チモロールは炭酸脱水酵素の賦活化剤であるので、緑内障治療薬である炭 酸脱水酵素阻害剤とチモロールを同時投与すると、炭酸脱水酵素阻害剤の効果が打ち消され てしまう可能性を示した。

Fig. 10 Activation mechanism of timolol for hydration activity of carbodioxide in HCA I.

2. 計算化学による酵素及びその部位特異的変異体の立体構造予測

2-1 Rat-Dipeptidyl Peptidase III 中の残基 Glu⁵⁰⁷ および Glu⁵¹² は His 残基と亜鉛イオンの配 位結合を安定化していた 一計算化学による Rat-Dipeptidyl Peptidase III の立体構造の 推定一⁵⁾

我々はアミノ末端からジペプチドを切り出す rat-Dipeptidyl Peptidase III (rat-DPP III)のアミ ノ酸配列を明らかにし、この酵素が通常の亜鉛結合モチーフ配列 (HEXXH.E) にもう一残基 加わった新奇な亜鉛モチーフ配列 (HELLGH(450-455))を持つ事を発見した³⁸⁾。Rat-DPP III は 特にプラスに電荷した基質 Arg-Arg-β-naphthylamide(Arg-Arg-β-NA) に対して基質特異性が高 い。

Rat-DPP III のこの新奇な亜鉛モチーフ配列に亜鉛イオンが結合しているかどうかを知るために、多くの部位特異的変異体を作成し、亜鉛イオン含量・酵素活性を測定した結果、亜鉛イオンには His⁴⁵⁰ および His⁴⁵⁵ そして Glu⁵⁰⁸ が配位結合している事が分かった¹⁹⁻²⁰⁾。

亜鉛ペプチダーゼ中の亜鉛イオンは種々の遷移金属イオンに置き換える事が出来るが、普通の亜鉛モチーフ配列(HEXXH)を持つ亜鉛ペプチダーゼ中の亜鉛イオンを銅イオンに置き

換えると、活性を失ってしまう。しかし、新奇な亜鉛モチーフ配列 (HELLGH(450-455)) を持 つ rat-DPP III の銅イオン置換体は、天然の酵素の約 40% の酵素活性を示した^{19,20)}。最近相次 いで、yeast-DPP III および human-DPP III の X 線結晶構造解析がなされ、DPP III の立体構造 が解明された。そこで human-DPP III (rat-DPP III とのアミノ酸配列相同性 94%) 立体構造に 基づき、rat-DPP III の立体構造を計算化学で予測した。計算された rat-DPP III の活性部位の立 体構造を Fig. 11 に示す³⁹⁻⁴²⁾。

Fig. 11 Molecular modeling of catalytic cavity of rat DPP III. Model was generated as a template of the human DPP III X-ray structure. Zinc ion is showed as a sphere, catalytic amino acid residues as a stick (His⁴⁵⁵, His⁴⁵⁰, Glu⁴⁵¹, and Glu⁵⁰⁸), and other related amino acid side chains as stick

rat-DPP III の立体構造に基づいて、基質結合部位を知るために、活性部位付近に存在する負 電荷を持った Glu および Asp を探すと、Asp³⁷², Asp³⁷⁷, Asp⁴⁴⁴, Glu⁵⁰⁷, Glu⁵¹² の残基が見出された。 そこで、Glu(E) を同じ電荷を持つ Asp(D) 及び電荷のない Ala(A) に置き換えた部位特異的変 異体を作成し、基質 Arg-Arg-naphthylamide(Arg-Arg-NA) を用いて酵素活性を測定した。Asp 及び Glu を Ala に置き換えた場合、大きく酵素活性を低下させたのは、Asp⁴⁴⁴, Glu⁵⁰⁷, Glu⁵¹² で あった。そこでこれらの置換体の亜鉛含有量と酵素活性を測定し、その結果を Table 5 に示し た。

Glu⁵⁰⁷とGlu⁵¹²をAsp、Ala に部位特異的置換を行うと、酵素活性と酵素中の亜鉛含量が同時に大きく低下することが分かった。この結果より、Glu⁵⁰⁷とGlu⁵¹²が亜鉛イオンの結合になんらかの影響を与えている事が推定された。Fig. 11においてGlu⁵⁰⁷とGlu⁵¹²は亜鉛イオンに配位するHis 残基の近くに存在する。His⁴⁵⁰及びHis⁴⁵⁵のイミダゾール環の窒素原子とGlu⁵¹²とGlu⁵⁰⁷のカルボキシル基の距離を、rat-DPPIIIの立体構造において測ったところ2.8Åであり、水素結合している事が分かった。それゆえ、Glu⁵⁰⁷とGlu⁵¹²は、亜鉛イオンに配位するHis 残基と水素結合して、その配位構造を安定化させ亜鉛イオンに対するHis 残基の配位結合能力を高めていることが分かった。

Fig. 12 において、Glu⁵⁰⁷ には、Lys⁶²⁹ と Arg⁵¹⁰ が水素結合しており、また Glu⁵¹² には Asn⁴⁴⁶

	Zina Contant	Dalativa rata	of hydrolygig	
DPP IIIS	Zine Content	Relative rate of hydrolysis		
	(Mol/mol of protein ^a)	Arg-Arg-β-NA	Phe-Arg-β-NA	
		% (µmol/mg	g of protein ^b)	
Wild to me	1.02±0.15	100	100	
wild-type		(39.5±3.1)	(12.1±1.6)	
D444E	0.81±0.13	66	95	
D444A	0.82±0.11	24	11	
E507D	$0.65 {\pm} 0.07$	38	8	
E507A	0.29±0.04	4	0.9	
E512D	0.45 ± 0.06	49	47	
E512A	0.08±0.01	3	3	

Table 5 Zinc content and relative rate of hydrolysis for Arg-Arg-β-NA or Phe-Arg-β-NA of wildtype and mutated rat DPP IIIs

^{*a*} Values are means \pm SD (n=3)

^b Values are means±SD of two separate preparations of the wild-type enzymes with duplicate determinations.

が水素結合しており、亜鉛イオンに配位する His⁴⁵⁰ および His⁴⁵⁵ の周りには水素結合ネット ワークが形成されていた。この水素結合ネットワークは、亜鉛イオンに配位する His⁴⁵⁰ およ び His⁴⁵⁵ の構造を支えており、His⁴⁵⁵, His⁴⁵⁰ のイミダゾール環の窒素原子が、亜鉛イオンに配 位しやすいような方向を向かせる役割を担っていると思われる。それゆえ、Glu⁵⁰⁷、Glu⁵¹²を 部位特異的に変異すると His⁴⁵⁵, His⁴⁵⁰ が不安定化されて亜鉛イオンに対する結合が弱くなるた め、これらの部位特異的変異体は亜鉛を解離してしまう可能性を示した。これを確定するた めに、Glu⁵⁰⁷ および Glu⁵¹² を Asp、Ala に部位特異的変異した酵素中の亜鉛イオンの解離定数 を測定し、その結果を Table 6 に示した。いずれの部位特異的置換体も Glu を Asp に、さらに

Fig. 12 Molecular modeling of catalytic sites of the wild-type rat DPP III The model was generated as a template of the human DPP III crystal structure. The zinc ion is shown as a sphere, and amino acid side chains are shown as sticks.. Metal coordinates and hydrogen bonds are indicated by dashed lines.

Ala にするにつれて解離定数が大きくなる。これは Asp はカルボキシル基が存在し His 残基 と水素結合する能力があるが、Ala にはそれが全く無いために、Ala 置換体はより大きい亜鉛 イオンの解離定数を持つことが判った。

これら結果は、Glu⁵⁰⁷ と Glu⁵¹² のカルボキシル基が亜鉛イオンに配位する His⁴⁵⁰ と His⁴⁵⁵ の イミダゾール環の窒素に水素結合して、その配位構造を安定化させる事により、亜鉛イオン に対する His 残基の配位結合能力を高めている事を示した⁵。

F ₂	Zinc dissociation constant (M)	Maximum activity (%) ^b
Elizyille	(<i>K</i> d)	$(V_{\rm lim})$
Wild-type	(4.5±0.1)×10 ^{-13 a}	100
E507D	$(1.0\pm0.2)\times10^{-11}$	111
E507A	$(1.0\pm0.2)\times10^{-8}$	170
E512D	$(1.4\pm0.1)\times10^{-12}$	111
E512A	(2.6±0.7)×10 ⁻⁹	332

Table 6 Zinc dissociation constants of various mutated DPP IIIs at pH 7.4

^{*a*} from previous manuscript 9)

^b The hydrolyzing activity of each mutated enzymes toward Arg-Arg-β-NA is 100%.

以上、この章では rat-DPP III の立体構造を human-DPP III の立体構造を参考に計算化学で組 み立て、活性部位での水素結合ネットワークの重要性を示すことができた。しかし、基質で ある Arg-Arg-β-NA のアミノ末端と側鎖の正電荷を認識する酵素の残基はいまだ不明のままで あり、現在ドッキングシミュレーションと部位特異的変異によりこれらの残基を特定しよう と試みている。

2-2 Rat-Dipeptidylpeptidase III が基質と形成する酵素反応遷移中間体の構造の解明⁶⁾

新奇な亜鉛結合モチーフ HELLGH を持つ rat-DPP III、及び特異な亜鉛結合モチーフの Leu⁴⁵³を1つ取り除き一般的な亜鉛結合モチーフ配列 (HELGH) にした rat-Leu⁴⁵³-delet-DPP III (rat-del-DPP III) はいずれも酵素活性を示す。しかし、これらの酵素中の亜鉛イオンを銅イオ ンに置き換えると rat-Cu(II)-DPP III は天然の酵素の 40% 程度の活性を示すが、rat-Cu(II)-del-DPP III は完全に活性を消失する事を発見した¹⁹⁻²⁰。

human-DPP III の立体構造に基づき、Leu⁴⁵³ を取り除いた rat-DPP III および rat-del-DPP III の 立体構造をコンピュータ・シミュレーションにより推定したところ、ほぼ human-DPP III と同 じ立体構造を示した。これを Fig. 13 に示す³⁹⁻⁴²⁾。

Rat-DPP III および rat-del-DPP III における亜鉛結合部位の立体構造の差異は、亜鉛結合モチーフ配列部分のα-ヘリックス部分に限られていた。これを Fig.14 a と b に示す。Fig. 14 の rat-DPP III と rat-del-DPP III の亜鉛結合部位の立体構造において、rat-DPP III の活性の発現に関与 する His の直ぐ隣の Glu⁴⁵¹ は金属イオンに配位した水分子を活性化する事で、酵素活性発現

Fig. 13 Molecular modeling of rat-dipeptidyl peptidase III(rat-DPP III) The model was generated as a template of the human DPP III crystal structure. The mainchain was shown as a ribbon model.

に関与する重要な残基である事が知られている。Fig. 14 において、普通の大きさのヘリック スループを持つ rat-del-DPP III の Glu⁴⁵¹ に比べ、新奇な亜鉛結合モチーフ HELLGH を持つ rat-DPP III の Glu⁴⁵¹ は、大きなヘリックスループ上に存在するため、大きく亜鉛イオンに近づい ていた。Rat-DPP III では亜鉛イオンと Glu⁴⁵¹ のカルボキシ基の酸素原子の距離は、3.9 Åであ り、rat-del-DPP III では 4.9 Å であった。これは、rat-DPP III では Glu⁴⁵¹ が存在するヘリックス 部分が 5 残基で一回転する異常なヘリックス部分となり、Glu⁴⁵¹ が亜鉛イオンに近づきやす くなるためと思われる。この点が DPP III と del-DPP III の立体構造の大きな差異であった。

この立体構造の差異が、基質との結合にたいしてどの様に影響するかを検討する目的 で、ミカエリス型の反応中間体を捉えやすくするために keat が小さい基質である Lys-Ala-βnaphthylamide(Lys-Ala-β-NA)を選択し、rat-DPP III 中の亜鉛イオンを銅 (II) イオンに置換した rat-Cu(II)-DPP III を用いて反応を追跡した。種々の濃度の基質 Lys-Ala-β-NA を rat-Cu(II)-DPP III に加えて直ちに凍結させ、電子スピン共鳴スペクトルを測定した。Lys-Ala-NA の濃度を増 加させるにつれて、rat-Cu(II)-DPP III の EPR スペクトルは大きく変化した。この事は、基質 である Lys-Ala-NA が、rat-Cu(II)-DPP III 中の銅イオンの配位構造を大きく変化させる事を示 している。一方、亜鉛イオンを銅 (II) イオンに置換した rat-Cu(II)-del-DPPIII に十分量の基質 である Lys-Ala-NA を加えても(基質濃度は、活性を示す rat-del-DPP III の Km 値より決定)、 その EPR スペクトルは全く変化しなかった。以上に示すように rat-Cu(II)-DPP III の銅イオン 配位構造は非常に flexible であるのに対し(配位構造が固定化している)である事が分かった。これ は rat-del-DPP III に比べ、rat-DPP III が大きなヘリックスループを持つためであると考えられ る。

Fig. 14 The comparison between the zinc binding site of rat-DPP III and rat-del-DPP III The model was generated as a template of the human DPP III crystal structure. The main chain and the residues were shown as a ribbon model and a ball-stick model, respectively. The zinc ion is shown as a space fill model.

謝辞

これらの研究の遂行にあたり、多くの討論と示唆をして頂いた薬学部・薬品物理化学研究 室の小野行雄教授に深く感謝致します。また、この研究のテーマの切っ掛けを作って頂いた 京都大学農学部名誉教授 故廣海啓太郎先生、及び酵素に対する金属結合定数の測定の基礎 を教えて頂いた名古屋市立大学薬学部名誉教授 故喜谷喜徳先生に深く感謝致します。

REFERENCES

- 1) Fukasawa, K. M., Hirose, J., Hata, T., Ono, Y., Biochemistry, 45(38), 11425-11431 (2006).
- Hirose, J., Ohsaki, T., Nishimoto, N., Matuoka, S., Hiromoto, T., Yoshida, T., Minoura, T., Iwamoto, H., and Fukasawa, K. M., *Biol. Pharm. Bull.*, 29(12), 2378-2382 (2006).
- Sugimoto, A., Ikeda, H., Tsukamoto, H., Kihira, K., Takeda, C., Hirose, J., Hata, T., Baba, E., Ono, Y., *Biol. Pharm. Bull.*, **31**(5), 796-801 (2008).
- Sugimoto, A., Ikeda, H., Tsukamoto, H., Kihira, K., Ishioka, M., Hirose J., Hata, T., Fujioka H., Ono, Y., *Biol. Pharm. Bull.* 33(2), 301-306 (2010).
- Fukasawa, K. M., Hirose, J., Hata, T., Ono, Y., *Biochim. et Biophys. Acta*, 1804 (10), 2063-2069 (2010).
- 6) Hirose, J., The EPR spectra of the Enzyme-Substrate (Lys-Ala-β-Naphthylamide) Complex in Cu(II)-Dipeptidyl Peptidase III. 13th International Conference on Biological Inorganic Chemistry (July 15-20, Vienna, Austria) J. Biol. Inorg. Chem. (2007) 12(1), S-57, submitted for publication.
- Fukasawa, K. M., Hirose, J., Hata, T., Ono, Y., The 3D structure and metal preferences of unique zinc-binding motif HExxGH-52aa-E in dipeptidyl peptidase III (family M49). *Jornal of Amino*

Acids, submitted for publication.

- Fukasawa, K. M., Fukasawa, K., Kanai, M., Fujii S., and Harada, M., J. Biol. Chem. 271, 30731-30735 (1996).
- Fukasawa, K. M., Fukasawa, K., Harada, M., Hirose, J., Izumi, T., and Shimizu, T., *Biochem. J.* 339, 497-502 (1999).
- McDonald, J. K., and Barrett, A. J. (1986) in *Mammalian Proteases* (McDonald, J. K., and Barrett, A. J., eds) vol. 2, pp. 48-55, Academic Press, Inc., London
- 11) Thunnissen, M. M. G. M., Nordlund, P., and Haeggström, J. Z., Nature Str. Biol. 8, 131-135 (2001).
- 12) Makita, N., Funk, C. D., Imai, E., Hoover, R.-L., and Badr, K. F., FEBS Lett. 299, 273-277 (1992).
- 13) Vazeux, G., Iturrioz, X., Corvol, P., and Llorens-Cortes, C., Biochem. J. 334, 407-413 (1998).
- 14) Luciani, N., Marie-Claire, C., Ruffet, E., Beaumont, A., Roques, B. P., and Fournie-Zaluski, M.-C., *Biochemistry* 37, 686-692 (1998).
- 15) Rudberg, P. C., Tholander, F., Thunnissen, M. M. G. M., and Haeggström, J. Z., J. Biol. Chem. 277, 1398-1404 (2002).
- 16) Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., Olson, A. J., J. *Comput. Chem.*, 19, 1639-1662 (1998).
- 17) http://www.scripps.edu/%7Esanner/python/index.html
- 18) Dewar, M. J. S., Zoebisch, E. G., Healy, E. F. and Stewart, J. J. P., J. Am. Chem. Soc., 107, 3902 (1985).
- Hirose, J., Iwamoto, H., Nagao, I., Enmyo, K., Sugao, H., Kanemitu, N., Ikeda, K., Takeda, M., Inoue, M., Ikeda, T., Matsuura, F., Fukasawa, K.M., and Fukasawa, K., *Biochemistry* 40, 11860-11865 (2001).
- 20) Hirose, J., Kamigakiuchi, H., Iwamoto, H., Fujii, H., Nakai, M., Takenaka, M., Kataoka, R., Sugahara, M., Yamamoto, S., and Fukasawa, K. M., *Arch. Biochem. Biophys.* **431**, 1-8 (2004).
- Bertini, I., Canti, G., Kozlowski, H., and Scozzafava, A., J. Chem. Soc. Dalton Trans., 1270-1273 (1979).
- 22) Rosenberg, R.C., Root, C.A., Bernstein, P. K.and Gray, H. B., J. Am. Chem. Soc. 97, 2092-2096 (1975).
- Tsukamoto, H., Noma, H., Matsuyama, S., Ikeda H., Mishima, H.K., *J Ocul Pharmacol Ther.* 21, 170-173 (2005).
- 24) Tsukamoto, H., Noma, H., Matuyama, S., Ikeda, H. and Mishima, H.K., *J. Ocul. Pharmacol. Ther.*, 21, 395-399 (2005).
- 25) Khalifah, R.G., J. Biol. Chgem. 246, 2561-2573 (1971).
- 26) Kumar, V., Kannan, K. K., Sathyamurthi, P., Acta Crystallographica, Section D: Biological Crystallography, D50, 731-738 (1994).

- 27) Sanner, M. F., J. Mol. Graphics Mod., 17, 57-61 (1999).
- 28) Pocker, Y., Deits, Thomas, L., J. Amer. Chem. Soc., 104, 2424-34 (1982).
- 29) Tibell, L., Forsman, C., Simonsson I., Lindskog, S. Biochim. et Biophy. Acta, Protein Structure and Molecular Enzymology, 789, 302-10 (1984).
- 30) Jöensson, B. M., Håkansson, K., Liljas, A., FEBS Letters, 322, 186-190 (1993).
- 31) Cornish-Bowden, A., "Fundamentals of Enzyme Kinetics," Butterworth & Co., London, 1981
- Hiromi, K. "Introduction to Enzyme Chemistry," eds. by Nishizawa K., Shimura K., Nankodo, Tokyo, 1995, pp. 21-92
- 33) Supuran, C.T., Nature, 7, 168-181 (2008)
- 34) Vullo, D., Innocenti, A., Nishimori, I., Scozzafava, A., Kaila, K., and Supuran, C.T., *Bioorg. Med. Chem. Lett.*, **17**, 4107-4112 (2007)
- 35) Briganti, F., Mangani, S., Orioli P., Scozzafava, A., Vernaglione, G., and Supuran, C. T., Biochemistry, 36, 10384-10392 (1997)
- 36) Scozzafava, A. and Supuran, C. T., Bioorg. Med. Chem. Lett., 12, 1177-1180 (2002)
- 37) Temperini, C., Scozzafava, A., Puccetti, L., and Supuran, C. T., *Bioorg. Med. Chem. Lett.*, 15, 5136-5141 (2005)
- 38) Fukasawa, K., Fukasawa, K.M., Kanai, M., Fujii, S., Hirose, J., and Harada, M. Biochem. J. 329, 275-282 (1998).
- 39) Case, D. A., Darden, T. A., Cheatham, III, T. E., Simmerling, C. L., Wang, J., Duke, R.E., Luo, R., Crowley, M., Walker Ross, C., Zhang, W., Merz, K. M., Wang, B., Hayik, S., Roitberg, A., Seabra, G., Kolossváry, I., Wong, K. F., Paesani, F., Vanicek, J., Wu, X., Brozell, S. R., Steinbrecher, T., Gohlke, H., Yang, L., Tan, C., Mongan, J., Hornak, V., Cui, G., Mathews, D. H., Seetin, M. G., Sagui, C., Babin, V., and Kollman, P. A. (2008), AMBER 10, University of California, San Francisco.
- 40) Onufriev, A. and Bashford, D. Case, D.A., J. Phys. Chem. B, 104, 3712-3720 (2000).
- 41) Duan, Y., Wu, C., Chowdhury, S., Lee M.C., Xiong, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., and Lee, T., *J. Comput. Chem.* 24, 1999-2012 (2003).
- 42) Lee, M.C., and Duan, Y., Proteins, 55, 620-634 (2004).