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Antioxidative Activities of Wine and Grape Polyphenols 

 

Hiroyuki Haraguchi＊, Takanori Morisada, Aiko Kato, and Mari Tsutsumi 

 

Lipid peroxidation of biological membranes damages the membrane structures and functions, 

resulting various cellular dysfunctions.  Mitochondria are the most susceptible targets of the lipid 

peroxidation.  The effects of wine and grape polyphenols on mitochondrial peroxidation were 

investigated.  Anthocyanidins (cyanidin, melvidin and pelargonidin) were effective to prevent 

respiratory chain linked and non-enzymic lipid peroxidation in mitochondria.  Flavan-3-ol 

(epicatechin) protected respiratory enzyme activities against NADPH-dependent peroxidation.  

Resveratorol was also effective in preventing mitochondrial peroxidation induced by 

dihydroxyfumarate.  These protective activities of polyphenolic compounds in wines and grapes 

against mitochondrial injury would provide beneficial influence to human health.  
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Introduction 

There has been an increasing interest in the contribution of free radical reactions participated in reactive oxygen 

species to the overall metabolic perturbations that result in tissue injury and disease.  Reactive oxygen species 

are generated in specific organelles of cells under normal physiological conditions.  The reduction of molecular 

oxygen to water proceeds by a series of single electron transfers, therefore, highly reactive intermediates such as 

superoxide anion, hydrogen peroxides and hydroxyl radical are generated in mitochondria1).  The defence 

mechanisms against these reactive oxygen species include radical scavenging enzymes and cellular antioxidants.  

A critical balance exists between the generation and detoxication of reactive oxygen species in cells.  However, 

diseases, aging and chemical environments such as drugs, pesticides, herbicides and various of pollutants can 

disrupt this balance by inhibition of the cellular antioxidant defences and/or by stimulation of the formation of 

reactive oxygen species.   

These reactive oxygen species can abstract hydrogen atoms from unsaturated fatty acids to initiate the 

peroxidation of membrane lipids.  It is suggested lipid peroxidation may be a common pathogenic mechanism 

because it is considered a basic mechanism involved in reversible and irreversible cell and tissue damage2).  

Lipid peroxidation of biolobical membranes damages the membrane structures and functions not only by 

degrading the highly unsaturated fatty acids but also forming breakdown products that can result in other types of  
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membrane damages and disturbances elsewhere.  Cellular damage due to lipid peroxidation causes serious 

derangements such as ischemia-reperfusion injury, coronary arteriosclerosis, diabetes mellitus and 

neurodegenerative diseases3), and is associated with aging4).  

In living systems, dietary antioxidants such as a-tocopherol, ascorbic acid, carotenoids, flavonoids, and other 

phenolics may be effective in protection from oxidative damages   There is substantial evidence that a diet rich 

in fruit and vegetables may reduce the risk of aging and oxidative stress associated with diseases5).  Grapes and 

wines are known as polyphenol-rich foods6.)  Various types of phenolic compounds were found in commercial 

wines and grapes; benzoic acids such as gallic acid, syringic acid, gensitic acid, and p-hydroxybenzoic acid, 

phenylpropanoids such as cinnamic acid, caftaric acid, caffeic acid, p-coumaric acid and ferulic acid, flavonols 

such as rutin, quercetin and myricetin, anthocyanins such as cyanidin-3-glucoside, fravan-3-ols including catechin 

and epicatechin, procyanidin dimers B1, B3, B4, B6, B8, and trimer C3, stilbenes including reveratorol and 

viniferin7-9).   

This article deals with wine and grape polypnenols as antioxidants in mitochondrial peroxidation processes, 

because mitochondria are the most common sources of reactive oxygen species10).  Polyphenols in grapes and 

wines mentioned here were presented in Figure 1. 
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Figure 1. Phenolic Compounds in Wines and Grapes.  
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Materials and Method 

Preparation of mitochondria.  Livers of Wistar male rat weighing 100-150 g were removed quickly and 

dropped into ice-cold 3 mM Tris-HCl buffer (pH 7.4) containing 0.25 M sucrose and 0.1 mM EDTA.  

Mitochondria were obtained as a pellet after centrifugation at 15,000 x g and then resuspended in 100 mM 

2-[4-(2-hydroxyethyl)-1-piperazinyl] ethanesulfonic acid (HEPES) buffer (pH 7.2).  Submitochondrial particles 

were prepared by sonication of mitochondrial suspension for 1 min at 4°C11). 

Measurement of lipid peroxidation.  Rat liver submitochondrial particles (equivalent 0.3 mg protein) were 

incubated at 37°C in 1 mL of reaction mixture containing 50 mM HEPES-NaOH (pH 7.0), 2 mM ADP, 0.1 mM 

FeCl3, 10 µM rotenone and 0.1 mM NADH.  The reaction was initiated by the addition of NADH.  After 5 min, 

2 mL of TCA-TBA-HCl reagent (15 % w/v trichloroacetic acid; 0.375 % thiobarbituric acid; 0.25 N HCl) and 90 

µL of 2 % butylated hydroxytoluene (BHT) were added to the reaction mixture.  The solution was heated for 15 

min in a boiling water bath.  After cooling, the flocculent precipitate was removed by centrifugation at 1,000 x g 

for 10 min.  The absorbance of thiobarbituric acid (TBA) reactive substances in the supernatant was determined 

at 535 nm.  Ascorbate-induced mitochondrial lipid peroxidation was measured in a solution consisted of 50 mM 

HEPES buffer (pH 7.4), 20 mM KCl, 10 µM FeSO4, 0.2 mM ascorbate and mitochondrial suspension at 37°C for 

20 min.  The formation of TBA reactive substances was determined by the same method as described above 12).  

Mitochondrial peroxidation and assay for enzyme activity.  NADPH-dependent peroxidation of rat liver 

submitochondrial particles were acheived in a medium containing 0.1 M mannitol, 5 mM potassium phosphate 

(pH 7.4), 10 mM Tris-HCl (pH 7.4), 0.1 mM EDTA, 1 mM ADP and 0.3 mM FeCl3 at 25°C.  The reaction was 

started by the addition of 0.5 mM NADPH.  At intervals during incubation, mitochondrial suspensions were 

taken out from the mixture and NADH-cytochrome c reductase and succinate-cytochrome c reductase activities 

were measured.  The reductase activity was assayed by measuring the increase in the absorbance at 550 nm 

resulting from the reduction of cytochrome c.  The reaction mixtures contained 50 mM potassium phosphate 

buffer (pH 7.4), 5 mM NaN3, 2.1 mg of oxidized cytochrome c, and 200 µM NADH or 20 mM sodium succinate 

in a total volume of 3 mL. 13)  

Dihydroxyfumarate-induced mitochondrial peroxidation was carried out in a solution consisting of 50 mM 

phosphate buffer (pH 7.4), 0.1 mM FeCl3, 1 mM ADP and 0.3 mM dihydroxyfumarate (DHF) at 30°C.  At 

intervals during incubation, mitochondrial suspensions were taken out from the mixture and respiratory enzyme 

activities were measured as described above14). 

 

Results 

Effect of anthocyanidins on mitochondrial lipid peroxidation.  Redox reactions frequently occur in 

mitochondria, which are constantly susceptible to oxidative stress.  Especially, inner membranes of mitochondria 

are at risk for lipid peroxidation, because mitochondria utilize oxygen at a high rate and inner membranes have a 

large content of polyunsaturated fatty acids, together with peroxidation catalysts such as iron and copper.  It has 

been reported that NAD(P)H support enzymatically induced lipid peroxidation in submitochondrial particles in 
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the presence of an iron chelate15).   

The flesh peels of grapes and commercial red wines contain anthocyanins, which are hydrolyzed to generate 

anthocyanidin16).  As shown in Table 1, anthocyanidins were effective to prevent NADH-dependent lipid 

peroxidation in mitochondria.  Especially, cyanidin and melvidin completely inhibited mitochondrial lipid 

peroxidation at 30 M.  Lipid peroxidation linked with complex Ⅱwere also prevented by anthocyanidins.  

Succinate-dependent mitochondrial lipid peroxidation were completely inhibited by both pelargonidin and 

melvidin at 30 M.  Pelargonidin was a potent antioxidant against NADHP-dependent peroxidation, showed 

complete inhibition at 3 M.   

Ascorbate-induced nonenzymatic lipid peroxidation in mitochondria was also inhibited by all of compounds.   

Flavonols such as quercetin and myricetin showed antioxidative activities against microsomal lipid peroxidation 

as well as anthocyanidins (data not shown), however, had no effect against mitochondrial electron transport 

dependent peroxidation.  

 

 

     

pelargonidin
cyanidin
delphinidin
peonidin
malvidin

NADH-
dependent

IC50 (M)

succinate-
dependent

Table 1.  Antioxidative Activities of Anthocyanidins in Mitochondria.

ascorbate-
induced

anthocyanidin
NADPH-
dependent

16.8
14.7
86.2
16.2
15.8

14.5
67.2
71.7
66.3
16.8

  4.3
14.8
71.8
60.2
65.8

65.9
47.0
15.7
65.5
62.7

 

 

 

Effect of flavan-3-ols on mitochondrial functions.  Various oxidative stresses affect the mitochondrial enzyme 

activities17).  NADH-cytochrome c reductase and succinate-cytochrome c reductase are the most sensitive sites to 

mitochondrial peroxidative injury.  NADPH-dependent lipid peroxidation in submitochondrial particles results in 

a remarkable loss of these enzyme activities.  When rat liver mitochondria were incubated with 

Fe3+-ADP/NADPH, membrane lipids were peroxidized and NADH- and succinate-cytochrome c reductase 

activities decreased; almost 80% loss of activities were observed for 90 and 30 min incubation, respectively.   

Flavan-3-ols, catechin and epicatechin, are also physiological active compounds found in wines and grapes as 

well as anthocyanins18).  As shown in Figure 2, epicatechin protected both enzyme activities against 

NADPH-dependent peroxidation.  Catechin also exhibited almost same protective effect against mitochondrial 

peroxidation. 
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Effect of stilbene on mitochondrial functions.  Mitochondrial respiratory chain generates superoxide anion and 

subsequently, hydrogen peroxide at the level of complex I and at the ubiquinone-cytochrome b segment.  Lipid 

peroxides produced by hydroxy radical derived from hydrogen peroxide and superoxide anion affect 

mitochondrial function19).  The autoxidation of dihydroxyfumarate (DHF) generates superoxide anion and 

hydrogen peroxide.  Once formed, superoxide anion leads to the generation of hydroxy radical through 

non-enzymatic dismutation, which is catalyzed by Fe3+-ADP.  When mitochondrial suspensions were incubated 

with DHF, respiratory enzyme activities decreased.  The addition of Fe3+-ADP to the incubation mixture 

accelerated the loss of enzyme activities.   

A stilbene, resveratorol, has various of physiological activities, and is rich in grape seeds and commercial 

wine20).  As shown in Figure 3, resveratorol protected the enzyme activities of NADH- and 

succinate-cytochrome c reductase against dihydroxyfumarate-induced peroxidation.  Resveratorol at 13.1 M 

recovered the activity of NADH- cytochrome c reductase to non-peroxidized level. 

 

Discussion 

In living systems, various reactive oxygen species are generated and can cause cell damage.  A major form of 

cellular oxidative damages is lipid peroxidation, which is initiated by reactive oxygen species through the 

extraction of a hydrogen atom from unsaturated fatty acids of membrane phospholipids.  Membrane lipids are 

particularly susceptible to oxidation not only because of their high polyunsaturated fatty acid content but also 

because of their association in the cell membrane with enzymic and non-enzymic systems capable of generating 

free radical species.  Mitochondria are the most susceptible targets of the lipid peroxidation, because of their high  
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contents of polyunsaturated fatty acids and of the source of oxygen radicals by electron transport chain10). 

In this article, characteristic antioxidative polyphenols in wines and grapes were mentioned placing the focus 

on mitochondrial peroxidation.  Grapes, wines and their polyphenols attract public attention by their potentially 

positive effect on human health21).  Anthocyanidins, flavan-3-ols and stilbenes found in wines and grapes were 

effective not only in preventing membrane lipid peroxidation linked mitochondrial electron transport system, but 

also in protecting mitochondrial functions against oxidative injury.  Mitochondrial damage due to lipid 

peroxidation causes various diseases3) and associated with aging4).  Epicatechin was reported to act as a positive 

regulator of mitochondrial structure/function endpoints and redox balance control systems in skeletal and cardiac 

muscles of dystrophic22).  Certain anthocyanins can act as electron acceptors at complex I in mitochondria, and 

bypass ischemia-induced inhibition, resulting in increased ATP production after ischemia23).  Resveratrol has 

protective effects against calcium-induced reduction of the respiratory rate in mitochondria24).  Thus, wine and 

grape polyphenols affect various mitochondrial functions. 

Beyond antioxidative activities in mitochondria and protective properties on mitochondrial function, 

anthocyanins25), flavan-3-ols26) and resveratrol27) possess a variety of physiological effects.  The polyphenolic 

compounds in wines and grapes would provide potentially beneficial influence to human health. 
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ワイン・ブドウに含まれるポリフェノールの抗酸化活性 

 

原口博行、森定敬雅、加藤愛子、堤 麻里 

 

福山大学生命工学部生物工学科 

〒729-0292 広島県福山市学園町 1番地三蔵 

 

生体膜脂質の過酸化は膜構造及び機能に障害を与え、細胞の機能低下を導く。ミトコンドリアは、特に

活性酸素の生成が盛んであり、それに伴う内膜の過酸化のターゲットとなる。本稿では、ワイン及びブドウ

に含まれるポリフェノール化合物のラット肝ミトコンドリアにおける抗酸化作用を検討した。アントシアニ

ジンはミトコンドリアの電子伝達系に依存した脂質過酸化及び非酵素的な脂質過酸化を抑制した。エピカテ

キンは NADPH 依存性の呼吸酵素の活性低下を抑制した。レスベラトロールも DHF により誘導される酸

化障害からミトコンドリアの機能を保護した。これらの効果から、ワイン及びブドウのポリフェノールが我々

の健康に寄与することが期待される。 
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