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Behavior of the Parallel Code Method

Takashi OZEKTI*

Taizo ITJIMA'

ABSTRACT

Parallel Code Method (PCM) is one of iterative methods for solving nonlinear equations.

The method uses an initial constant matrix instead of Jacobi matrix at every iteration.

First, the notion of local convergence for PCM is defined and a sufficient condition for local

convergence is given. Secondly, it is shown that the approximations generated by PCM

are represented by an infinite power series under the condition that a root of the nonlinear

equation is not multiple. Next, based on this property, the sequence of approximations of

PCM is accelerated and a better approximation of a root is estimated. Finally, it is verified

by numerical examples that the sequence is accelerated according to the property.
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Newton-Raphson’s Method

1. Introduction

It is difficult to solve nonlinear equations analytical-
ly because they have complicated structure in gener-
al. Therefore, various iterative methods have been pro-
posed to solve them. For example, Newton-Raphson’s
method, which is frequently used to solve nonlinear e-
quations, has a quadratic convergence [1,2]. The rea-
son is that the method uses a differential information,
which is a Jacobian matrix, at the newest approxima-
tion. However, it takes many calculations and long time
to get a Jacobian matrix at every iteration. On the oth-
er hand, we treat Parallel Code Method (PCM) [3] or
known to von Muses Method [4]. The method is an it-
erative method for solving a nonlinear equation of one
variable by using an initial constant matrix instead of
a Jacobi matrix at every iteration. The method de-

mands little calculation at every iteration but the con-

vergence is linear and slow. However, we find a remark-
able property of PCM that the sequence of approxima-
tions is represented by an infinite power series. Based
on this property, we propose an acceleration method
of the sequence of approximations generated by PCM.
By numerical examples, we verify that the sequence is

accelerated according to the property.

2. Local Convergence

Let f(z) be a continuous differential nonlinear function
of one variable. We shall find a root of the equation
f(z) = 0. Now, let =g be an initial approximation of a

root. By using the iterative method:

zn, — @(2n) f(2n), (1)

the approximation z,, is refined. Here, the function

Tntr =

o(z) is continuous. If p(z,) = 0 for some n, the ap-
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proximation &, is not influenced by the iteration (1).
So, we demand that the function ¢(z,) is not equal to
zero for any integers n > 0. If a sequence {z,} con-
verges, we have

im f(zn) = lim 22 2ntl — (2)

n—o0 n—oo gp(xn)
Therefore, the sequence {z,,} converges to a root of the

equation f(z) = 0.

Definition 2.1 PCM has a local convergence at a root
p if there exists a positive M such that {z,} converges

to p for any zo € [p— M,p + M].

A sufficient condition for a function ¢(z) where the

iterative method (1) has a local convergence at a root

p is given in the following theorem.
Theorem 2.1 If the inequality
1-e@)f (@) < 1 3)

holds, the sequence {z,} of the iterative method (1)

locally converges to a root p of the equation f(z) = 0.

Proof: From the differentiability of the function f(z),

it can be expanded in a Taylor series as

@) = f®=+o). (4)
Substituting (4) into (1), we get.
o 1 gan)f () +pla) - 22 )

Using the Contraction Principle, the sequence {z,}
converges locally under the condition of the inequali-
ty (3). [ |

3. Properties

Parallel Code Method is defined by the iteration:

— pf(@a), (6)

Tntl =

where g is a suitable constant. It is the special case
that the function ¢(z) is a constant g in the iteration
(1). Behavior of the sequence of PCM that converges to

a root of a equation do not depend on the coordinates.

Hence, to simplify discussion, we introduce a new se-

quence y, = &, —p and a new function g(z) = f(z+p).
Then PCM is represented by
Ynt1 = Yn — 4g(yn) (M

and we shall find the root 0 of the nonlinear equation
g(z) = 0. [See Fig. 1]

4

8(y)

gradient 1/ u

n+1 yﬂ :Lt g(yn)
Figl. Parallel Code Method.

Here after, we assume that a constant yu satisfies the

sufficient condition of Theorem 2.1:

N-pg'(0) < 1L (8)

This condition also means that the root 0 is not multiple
since the differential coefficient g'(0) is not equal to

zZero.

Lemma 3.1 If there holds pp # —r(—(B, PCM has a linear

convergence. In other words,

Potl) = |1 — g (0)| 9)

n—oo

holds.

Proof: From (5), we have

Yn Yn
Limiting n to infinity, we have the equation (9). [ |

We assumed that a nonlinear function f(z) is con-

tinuous and differential. Moreover, we assume that the



function f(z) is regular in a neighborhood of a root p.
Then the function g(z) = f(z + p) can be represented

by a power series as
[e]
g(z) = Z apz® (11)
k=1

at the root 0. Let use the notation a £ 1 — pay. Since

ar = ¢'(0), we get

fee)
—H Z aryh
o
{ £ > ak+1yfkl} (12)
k=1

from (7). From this recurrent formula, we have

n-1 (e
Un = a"’yoH {1—§Zak+1yf}' (13)
i=0 k=1 )

In this time, the following lemma holds.

Yng1 =

R |

Lemma 3.2 The infinite product

[o 0] N (o0}
yoE{l - ;;akﬂyf} (14)
= —1

converges if the sequence {y, } converges locally. There-
fore, let M denote the value of (14) then we get

im 2 = M (15)

Proof: It is well known that the infinite product (14)

converges if the double sequence
[o >R o}
PIPILA (16)
i=0 k=1

converges absolutely [5]. From Lemma 3.1, we have

Yn+1
Yn

lim

n-—00

Therefore, if 8 satisfies 0 < |a| < # < 1, there exists a

large number N such that

lyn+1| < PBlynl (18)

for all n > N. Let separate

o0 00
Z Z Iak+1yﬂ
i=0 k=1
o0 oo o0
Y leeragfl+ DD larsayfl. (19)

k=1 i=N k=1

2

-1

I\
o

1056

Since approximations y, (n = 0,1,2,---) are included

in the convergent radius of the power series (11), the

first part
N-1
Z'ak+1yg (20)
i=0 k=1
converges. On the other hand, from (18), it holds

YN 4nl < B"|yn|. Therefore we have

00 o e i .
I IRPS SN
k=1i=N k=1 i=0
oo k
= ZIahHITIy_N—Ik
k=1

1 o0
< == laesllynl®. (21)
1_ﬂk=1

- Since yn is also included in the convergent radius of

g(z), the second part also converges. Hence, the infinite
product (16) converges absolutely and infinite product
also converges. [

This lemma means that the approximations y, are

approximated as

Ma" (22)

Yn =

when n is sufficient large. In other words, the function
g(y) can be approximated by a linear function g'(O)y
in a neighborhood of the root 0 and the sequence {y,}
can be approximated by a geometric series {Ma™} with

the convergent rate ¢ =1 — pg'(O). [See Fig. 2]

4 5)=g0y+

gradient g'(0)

gradient 1/u

yn+3 yn+2 yn+l

a =1-u g'0)
Fig2. Behavior of the sequence of PCM.

The approximate expression (22) can be extended to

the following theorem.
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Theorem 3.2 Let a regular function g(z)= Y io, a;z’
has a nonzero convergent radius. Let {y,} be the se-
quence of the approximations of PCM applied to the
function g(z). Then, there exist constants A; for i > 1
and a sufficient large integer N such that approxima-

tions are represented by a power series as

had I3
3 4o (23)
i=1

for all n > N. Here, constants {A4;} are obtained by a

recurrent formula:
A = M (24)

A = al_a(l——T-lSZa’ H Ay, (i>2). (25)

j=2 1=1,1<K <5
koot j=i

Before proving Theorem 3.2, we prepare two lemmas.

Lemma 3.3 Each A; (i > 1) defined by the recurrent
formula (25) is represented by

A,' = & 1, (26)
where constants ¢; are independent of the value of A;.

Proof: We prove this by using induction for 1.

(1) When 7 = 1, it is obvious because A; = A; and
c1=1.

(2) When ¢ < k, suppose that A; = ¢; A} for some
constants c;.

(3) When ¢ = k + 1, from (25), it holds

k+1

ara(l— a") z % H An

1=1,1<k <5
k1+ !

A’C-]—l =

l-o = 2
- k
= Ck All
a1a(1 - ak) ]Z=; ;=1,£Ikl$jl
kl+...+k»=k+1

l—-« 41 Ei4-+k;
= ——————ala(l — ak) Z a; ( Hck,)A 1

1—-« k+1 k+1
= —-— a Ck A 27

a1a(1—ak) Z 11(-11:II:I<11 ( )

gtk =kl

Therefore we have Agyq = ck+1A’f+1. Consequently,

A; for i > 1 are represented by the ith power of A;. B

= ZZ’L a;zt

has a nonzero convergent radius, a power series

Z ciz’ (28)

also has a nonzero convergent radius.

Lemma 3.4 If a regular function g(z)

G(z) 2

Proof: If A; # 0, it holds

0o 0
G(Alz) = ZC,‘ ’i:ci = EA,':lti. (29)
i=1 i=1

. . o) i
Therefore, if we prove that a power series ) ;2 Az
has a nonzero convergent radius, a power series G(z)
also has a nonzero convergent radius. We define B; by

the recurrent formula:

B, = |4 (30)
A 1
B = — a By, (i>2). (31
’ Iall(lal - |a|2) Zl ]ll 11I<Ikz<.1 * ( ) ( )
kydetkj=i

Then, since || < 1 and from the recurrent formula
(25), we get |A;| < B;. Hence, if H(z) 2 "%, B;o* has
a nonzero convergent radius, a power series 221 Azt
also has a nonzero convergent radius. Let introduce a

new function:

M) = A Wal(al - oP)”

. . . o0 X i
Since a regular function g(z) = ) ;”, a;2* has a nonzero
convergent radius, the function h(z) also has a nonzero

convergent radius. Moreover, since it holds
) 1
h(0) = — #0, 33
O = o# (53)

from the Inverse Function Theorem, h(z) has a unique
inverse function in a neighborhood of z = 0 [7]. Here,

since
hoH(z) = = (34)

the function H(z) becomes the inverse function of h(z)
in a neighborhood = 0. Therefore the power series
H(z) is regular in a neighborhood of = 0 and has
a nonzero convergent radius. Hence, the power series
G(z) also has a nonzero convergent radius. [ ]
Proof of Theorem 3.2: From Lemma 3.4, the func-

tion G(x) has a nonzero convergent radius. Moreover,



since G(0) = 0 and G'(0) = ¢; = 1 > 0, there exists a
small number m > 0 such that m is included in the con-
vergent radius of G(z), G(m) > 0 and G(—m) < 0. Es-
pecially, we determine this m so small that ) .2 ; |e;|m’
is included in the convergent radius of the regular func-
tion g(z) = Y pe1 apz®.
is equal to zero, there exists a large number N such
that G(—m) < y, < G(m) for all n > N. Furthermore,

since G(z) is continuous and from the Intermediate Val-

Here, since the limit of y,

ue Theorem, there exists a point mg (Jmo| < m) such

that
Z cimb. (35)

= ;,Sv and using the recurrent formula
Then, 1t

YN = G(mo

Let determine A,
(25), we determine A;(i > 2) one by one.
follows Lemma 3.3 that

o o0
YN = E cmy = E c;AiatN =
i=1 i=1

Next, we shall prove that

e .
> AN (36)
i=1

D AV HE) (37)

i=1

YN+k

for £ > 0 by using the induction for k.
(1) When k = 0, it holds from (36).

(2) When k = n, we assume

YN+n Z Ao NFm), (38)

(3) When k =n+ 1, since p = ;1 , we have

YN4n+1

pI(YN+n)

=§:Aiai(N+“)—#iak (i Aiai(N+n))k
i=1 k=1 i=1

) ) 1 ) 00 ' E
= a-ZA;a‘<N+")— — a (zAga'(N+")) . (39)

i=1 k=2 i=1

=YN+4n —

Here, since 0 < |a| < 1, we get

Z e (}: 14 a*<N+">|)

=1

2 (3 lc.-uAlaNr'w")k

=1

k=1
fjw(i lc.-umol")k

=1 i=1

5 |ak|(i |c,-1mi)k. (40)

k=1 i=1

IA
kol

IN
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Here, since ) ;o |c;|m’ is included in the convergent

= E;;";l axz,
) =) ) k
> a (Z Aia’(N+")) (41)

k=1 i=1

radius of g(z) the double series

converges absolutely Therefore, we can change the or-
der of the double summation arbitrary. Hence, from
(39) and (25), we have

YN+n+1

had .

— Z{aAl_—— aJ H -A-k }al(N+n)
i=1 a1 j=2 1=1,1<K<;

k1+~~-+kj=i

[ee]

= 3 dgaiNantD), (42)
i=1

Finally, since || < 1 and y, = Y oo, ;@™ for n > N,
it holds

lim ¥ = A, + lim ZAa(’ n

n—oo n—00 e

= 4. (43)

M. n

In this theorem, the condition n > N can not be

Hence, from (15), we get A; =

replaced to n > 0. Because it happens that Zzl A; =
oo. However, if an initial approximation yp is sufficient

near to a root 0, there holds
00
Un = Y A (44)
i=1

for all n > 0. [See Ex.1 in Section 5.]

4. Acceleration

From Theorem 3.2 and since z, = y, + p, when n is

sufficient large, approximations &, are represented by

oo

z, = p+ Z A;a™, (45)
i=1

where p is a single root of the function f(z). It is known

that a method for the Limit Estimation [8] or ¢ algo-

rithm [9,10] are useful to accelerating the sequence of

this type. A method for Limit Estimation accelerates

a sequence {z,} by making a new sequence {pi™}:

Pizo ’\En)‘”n—i
T A

m 2

(n >2m). (46)
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Here A™ fori = 0,1,2,- -, m are determined by A{™ =

1 and simultaneous linear equations

v1'371—2'm-i-1vz"n—2m+2' -Vn_m /\Sr':)
Vxn—2m+2vzn—2m+3' . 'Vxn—m—}-l AS:-)—I
an—m vm‘n——m+1 t ‘V‘En—l /\g_n)
Ve, _m+1
Vz,_
- _ Tn—m+2 , (47)
Ve,

where Vz, 2 Zn — Tn—1. The convergent rate of an
original sequence {z,} is equal to |a|. However, the

rates of new sequences {pﬁ:")} become |a|™t! for m >

1. From the condition of local convergence, |af < 1

holds. Therefore the convergent rates are improved.

5. Examples

In order to verify above theorems, we practice some
examples.

[Ex. 1] Let a nonlinear function f(z) be

flz) = z+z% (48)

We shall find the root 0 of the equation f(z) = 0 by
using PCM. Let an initial approximation zp =1 and a
constant p = 0.2. Then it holds

la] = [1-02f(0)=11-02/=08<1 (49)

since @ = 1 — pa;. Therefore this constant p satisfies
the condition of local convergence of Theorem 2.1.

In the beginning, we find the value of A;. Since
a1 = az =1 and a; = 0 for 7 > 3, the infinite product

(14) becomes
Al =

If we omit to multiply more than 200 terms in the infi-

nite product (14), we have

200

Alzon{l—

i=0

uzi - DY
~ } =0.41460051---.  (51)

zoﬁ{l—ﬁ;ﬁi}. (50)
=0

Fig. 3 shows the graphof 3 ., A; forn=1,2,---,100
which is determined by the recurrent formula (25).
From this graph, it is seen that

100

ZAg%iAiz.’L‘o:l. (52)
i=1 i=1

Therefore, when an initial approximation zy is sufficient

near to a root, Theorem 3.2 holds for all n > (. Table 1

1.1

1

0.9 /

0.8 [
0.7

0.5

0.45——5306 a0 60 80

n

100

Fig3. Sum of A;, i equals one to n.

shows comparison between the original sequence {z,}.
and sequences {p™} m = 1,2,3 accelerated by the
method for Limit Estimation. We understand that ac-
celerated sequences {pslm)} converge faster if m is larg-
er. Table 2 shows the convergent rates of the sequences
{z,} and {p{™} (m = 1,2,3). From this table, we can

presume that each rate is equal to

lim 2L — 4 -08 (53)
n—00 .’l}n

)
lim =241 = o™t = (0.8)" Y, (54)

n—o0 ps‘m)
respectively. Therefore, we can confirm that the se-

quence {z,} is represented by the power series as (45).

[Ex. 2] Let a nonlinear function f(z) be
f(z) = sin(z). (55)

We shall find a root 0 of the equation f(z) = 0 by using
PCM. Let zp = 1 and g = 0.2. Then it holds

[1—0.2f(0)|=]1-02=08<1. (56)

lo| =
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Table 1. Comparison between «, and p,(lm) . Table 3: Convergent rates of z,, and pg,l) when g = 0.2.
n Tn szl) szz) Pszs) n Tn ZTpil p(l) Ps)l
0 | 1.00000000 n i 5O
1 | 0.60000000 0 | 1.00000000 | 0.83170580
3| 0.29310720 | 0.12191235 21 0.68388950 | 0.81522962 | —0.38309828 | 0.48746614
51 0.16439856 | 0.04216946 | 0.02190101 41 0.45170912 | 0.80673232 | —0.09331885 | 0.50558146
6 10.12611347 | 0.02585532 | 0.01038088 | 0.00768408 5 | 0.36440834 | 0.80439715 | —0.04718028 | 0.50851516
71 0.09770986 | 0.01606565 | 0.00505224 | 0.00282342 6 | 0.29312903 0.80285187 —0.02399189 | 0.51002994
8 | 0.07625844 | 0.01006889 | 0.00249634 | 0.00107867 [ oo | 0 | a=08 | 0 [ @®=0.512 |
9 | 0.05984368 | 0.00634702 | 0.00124552 | 0.00042147
10 | 0.04715869 | 0.00401688 | 0.00062553 | 0.00016641
[oo ] 0 I 0 0 0 From these examples, we can confirm that the se-
quence {z,} of PCM is represented by the power series
Table 2. Convergent rates of z, and p%m) . as follows:
Tugl P(l)l pf)x p?)l = ;
n] Sk | G | SF P T = pt) A (59)
0 | 0.60000000 i=1
1| 0.68000000
2 | 0.71840000 | 0.52828685 6. Conclusion
31 0.74137856 | 0.57664312
4| 0.75653932 | 0.59985069 | 0.44846373 .
51 0.76712029 | 0.61312912 | 0.47399084 PCM Suﬁers from the SIOW COnV_el'gence since the con-
6 | 0.77477731 | 0.62136718 | 0.48668734 | 0.36743730 vergence is linear. Therefore the method itself is not
7 1 0.78045803 | 0.62673391 | 0.49410554 | 0.38204486 . .
s | 078474831 | 0 63035988 | 049893647 | 0.39073234 useful. However, the method has a little calculation at
9| 0.78803126 | 0.63287601 | 0.50222788 | 0.39482980 every iteration since it dose not use a differential infor-
10 | 0.79056826 | 0.63466378 | 0.50453828 | 0.39924191 mation. Furthermore, the sequence has a good property
[oo] a=08 | o®=0.64 | o® =0.512 | o*=0.4097 |

Therefore this constant g also satisfies the condition of
local convergence of Theorem 2.1. Table 3 shows the
convergent rates of the original sequence {z,} and the
sequence {pﬁf)} accelerated by using the method for
Limit Estimation. As shown in the Table 3, the rate
%%l converges to a® = 0.512 instead of a? = 0.64.
This reason is that the function sin(z) is expanded to
the power series as

1 1
g — 24—z

ETR (57)

sin(z) =

at the root 0. In other words, there holds as; = 0 for
k > 1in (11). Therefore, from (25), we have Ay; = 0

for ¢ > 1. Hence, there holds
*© .
z, = Zx‘bi—w(z’_l)n (58)
i=1

from (23).

that the approximate sequence is represented by an in-
finite power series as z, = p + 3 0, Ai@'™ when the
root p of the nonlinear equation is not multiple. Here,
« is represented by using a first differential coefficien-
t fl(p) asa=1- pfl(p). Based on this property, we
got a better approximation which is estimated from the
original sequence of PCM.

A problem left for the future is to analyze nonlinear
equations with multiple roots. PCM can find an ap-
proximation of a multiple root of nonlinear equations.
How does the sequence of PCM behave in the case of
multiple roots? Another problem is extension of The-
orem 3.2 to nonlinear equations of several variables.
When we solve nonlinear equations of one variable,
Newton-Raphson’s method is one of the best choice to
solve them. However, when we solve nonlinear equa-
tions of several variables by using the method, it takes
much time to find a Jacobian matrix at every iteration.

On the other hand, PCM uses an initial constant ma-
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trix instead of a Jacobian matrix and demands a little
calculations at every iteration. Therefore we can hope
that our approach of acceleration is extended to solving

nonlinear equations of several variable.
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