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Motion of Particle in Steady Flow

by Numerical Experiment

Shinzaburo UMEDA and Motoaki YANO*

ABSTRACT

The motion of the tracer particle immersed in flow is seemed to be
an interesting problem in the flow visualization. Its motion éan be described
by the B.B.O.’s equation. In this paper the method of successive approxi-
mation is used to solve the B.B.O.’s equation. In order to visualize the
theoretical results of the motion of the tracer particle, the numerical experi-
ments are tried in the steady eddy flow of the wake behind a square pole.
The effect of the Basset term becomes clear and the characteristics of the
motion of particle is presented. '
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1. Introduction
In the method of flow visualization, many kinds of particle are used as the tracer of

the fluid flow. The motion of the tracer particle immersed in flow is seemed to be an inter-
esting problem in the measurement of fluid flow.

Its motion is represented by the B.B.O.’s (Basset, Boussinesq, Oseen) equation. Historic-
ally, many analytical methods, for example, Fourier, Laplace transform, theorem of Abel,
were applied to solve the B.B.O.’s equation.)»?»

The Basset term® of the B.B.O.s equation takes account of the effect of the deviation
in flow pattern from steady state. When the particle is accelerated at a high rate by a strong
external force, the Basset term may become substantial, increasing the instantaneous coeffi-
cient of resistance to many times its value at steady state.

In this paper, the method of successive approximation is used to solve the B.B.O.s
equation. On basis of the theoretical analysis, the trajectory of particles is examined in the
steady wake flow behind a square pole by numerical experiment.

2. Theoretical Consideration
- When the characteristics of flow (Re<0.4, Re=2r(U¢-U,)/v) is completely well known,
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that means the distribution of velocity, pressure, and density is known in the entire region
of the flow, the motion of a solid spherical particle immersed in flow can be described as the
following well known B.B.0O.’s equation (1).

MpdUp/dt=6unrV + MgdUs/dt + 1/2MedV/dt
D (ID) (111) (Iv)
+ 6r2\/mpg [§ (dV/dr/v/t=r)d7— (Mp-Ms)g 1)
(V) (VD

Where, V=U;-U,. The suffix f, p indicate the quantities concerning with fluid and particle,
and the symbol of M is mass; p, density; U, velocity; u, dynamic viscosity of fluid; r, radius
of particle; g, gravity acceleration.

The forces of each term of the equation (1) are (I) inertia force, (II) friction force,
(III) pressure gradient, (VI) force to accelerate the apparent mass of the particle, (V) Basset
term, and (VI) buoyancy force.

In this paper, the method of successive approximation® is used to solve the equation (1).
This equation can be normalized by using reference velocity U, and time T, where Ug=2r2x
(o-1)g/9v, T=2r%(v+1/2)/9v. As the result, the equation (1) is reformed to the equation (2).

U, =f, + [ K-U,dr, 2)

Where, f4=1+ydUg,/dt, -V, ; K=—(1+N+v/t,~7,). And the other related values are
U,=dv,/dt,; V*'_-V/Us:f:)U*dT* + Vo5 Vip =V(0); Ug,.=Ug/Us; v=(0-1)/(0+1/2); t,=t/T;
0=M,/M¢; A=+/92m(a+1]2)

When the successive approximation is applied to solve the integral equation (2), the

0’

equation (3) can be obtained

U, =f, + [ H-f,dr, 3)

where, H=% (-1)"(t,—7,)"/n! -2 E% D™ @"N@Ea-D) 1y, -r) "
~ n=0 k=0

n o N n+k 2 k+1
Xn+1+kczk+1()\2 m +r§0k2=0(—1) (te=r.)"/n! n+2+kc2k+20\ ™

In the equation (3), the function f, is a known function which is included buoyancy
force, flow acceleration, and initial mutual velocity of the particle.

The motion of particle is discussed® mainly based on the equation 3).

(i) Superposition

The superposition of the solutions can be possible in the equation (2) and (3).

(ii) Velocity of particle

The normalized velocity of the particle can be obtained to integrate the equation (3).

Ups = Ug, = fo(f.+ [y Hef,d7,)d7, =V, 4)
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where, V, =Us (0)-U,_(0).

(iii} Basset term

The Basset term (Eq. (1), (V)) is represented the term of -MA/t,-7, in kernel K func-
tion of the equation (2). When the Basset term is neglected from the equation (1), then
the kernel K=-1 in the equation (2), the function H in the equation (3) is calculated H=
-exp~(t,-7,). This is the same result that the second and the third terms are neglected from
the H function of the equation (3). The function H is shown in Fig. 1.

H
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‘ , (a) No Basset term
-0.2} a) (b) o=21.4
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(t*— T *)

Fig. 1 H function

(iv) Simple initial condition of particle
(a) Particle is released from fixed to free situation in flow at t,=0, U,_(0)=0;V, 0 Vs, -
(b) Particle is immersed enough long time in steady flow before t,=0, U,_(0)=Ut, (0);
V., =0.
(v} Equal density between fluid and particle
When the density of particle is the same of fluid, the reference velocity Ug=0. In this
case, the reference velocity U is selected Ug=2r’g/9». And rewriting the equation (1), the
obtaining equations are the same equation (2) ~ (4).
However, the function f, is f,=-V, .
The motion of the particle is affected only initial velocity of the particle.
(vi) Particle velocity in uniform flow neglected gravity force
When the fixed particle is released in the uniform flow at t,=0, the velocity of the

particle U, (t,) is
t to
Uy, /Ut = f, dr.+[[ *Hdr, )

The time variation of the particle velocity is shown in Fig. 2. We can obtain similarly
the vertical velocity of the particle (Up_=0 at t,=0) in the still fluid with gravity force.

Up, == (g dr,+ ffg* Hdr,) (6)
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(a) No Basset term
(b) o=21.4 (e) 0=2.65
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Fig. 2 Velocity of particle

(vii) Velocity of particle in uniformly accelerated flow neglected gravity force
When the particle (U, =Us, at t,<0) flows in the uniformly accelerated flow (dUg, /dt,=
constant) at t,=0, the velocity of the partcile Uy (t,) is

Upf Uf*—'yde*/dt* (f:)* dr,+ ff;*Hd'r*) 7

The final velocity of the particle approaches U, =Ug —ydUs /dt, at t,=ce.

In the vertical uniform flow with the flow velocity Uy and gravity force, the particle
has the final settling velocity U, =Ug —1 similarly.

The coefficient of the equation (7) is the related value of the density of the particle
(y=(0-1)/(0+1/2)). Therefore, the velocity of the particle is increased or decreased depending
on the density of the particle (6=1) and the acceleration of the flow (dUs, /dt, =0).

Let’s consider a part of eddy flow refering with Fig. 3, the velocity component of x-
direction of the flow increases but the y component decreases in this case. When the density
of the particle 6>1, the x component of the velocity of the tracer particle is decreased and
the y component is increased in this flow.

The pathline of the particle is located inside or outside of the stream line depending

Ups (021)
=2 Ugs
'Up*(r)'(l)

(dUg */ dty) x-comp??

I . (U, /dts) ycomp<0

Fig. 3 Schematic motion of particle in accelerated flow
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on the density of the particle ¢=1 in this flow.
When the settling velocity U of the particle is selected enough small, the term of the
acceleration (ydUg, /dt,) of the equation (7) can be neglected.

3. Numerical Experiment

In order to visualize the theoretical results of the motion of the tracer particle, the
numerical experiments of the particle motion are tried in the steady eddy flow of the wake
behind a square pole.

(i) Horizontal section without gravity force

In the horizontal section of the flow, the velocity vector of the eddy flow of the wake
is calculated numerically as shown in Fig. 4. The gravity force is neglected in this calcula-
tion. In this case the boundary velocity U, the coefficient of kinematic viscosity », and
the length of square pole 1 are Uy=15(cm/sec), »=0.15(cm?/sec) and 1=1.4(cm), respectively.

The standard pathline of the particle seems to be the line of the particle having the
same density of the fluid (o=1, referring 2. (v)). The calculated pathline is shown in Fig. 5 (a).
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Fig. 4 Flow pattern Re=140 (vertical section)

c=1.0
t4=10.0(r=0.020cm)

S:starting point
0:out point

No Basset term

o =2.65
t4=2.0 (r=0.031cnm)

S:starting point
0:out point

(b) | No Basset term

Fig. 5 Trajectory of particles (horizontal section)
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Fig. 5 Trajectorynof particles (horizontal section)

In the calculation of this pathline, in order to eliminate the effect of the initial condition
of the particles, the unit time t of the calculation is selected .as small as possible. Its value
is t=0.009(sec). The effect of the Basset term is not remarkable in this calculation. The
results of the both calculations with Basset and without Basset are almost the same. The
eddy flow seems to be the source type flow. The fluid flows out from inside to outside
of the eddy.

The pathlines of the particles having different specific weight (0=1) and radius are
calculated in order to compare the motion of the particle.

In the case of the density of the particle is greater than the fluid (2.65), the pathline
of the particle dropped in the center of the eddy flow represents the spiral out trajectory as
shown in Fig. 5(b). _

» When the particle having the smaller density as compared with the fluid (0=0.5) is
dropped in the center of the eddy flow, the pathline of the particle represents the similar
spiral out motion as shown in Fig. 5(c).

However, using the particle with the same density (0=0.5) but having large radius, the

pathline of the particle represents the spiral in motion as shown in Fig. 5(d). Also the effect
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Fig. 6 Spin count of the motion of particle (horizontal section)
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of ‘the Basset term can be obtained as compared with the results of Fig. 5 (e) and 5 (d).
We can confirm the theoretical consideration (2. (vii)) from these numerical experiments.

Fig. 6 shows the
is the value divided the

relation between t, and the spin count ratio. The spin count ratio
spin count of the spiral motion by the one of the standard pathline.

The spiral in or out motion of the particle is related to the radius and the density of the

particle.

(ii) Vertical section with gravity force
In the vertical section of the flow, the velocity vector in the wake behind a square

pole is calculated numerically as shown in Fig. 7. The gravity force is considered in this

calculation.

The pathline of the particle with the same density of the fluid is shown in Fig. 8(a).
The fluid flows out from inside to outside of the eddy flow.

The all calculated
“the spiral out motion as

pathlines of the particle having different density and radius represent
shown in Fig. 8(b), (¢) and (d).

s N

S e,

Fig. 7 Flow pattern Re=140 (vertical section)
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— O

S:starting point
O:out point

No Basset term

c=1.04
t4=0.5 (r=0.089cm)

1,
S:starting point
0:out point

No Basset term

Fig. 8 Trajectory of particles (vertical section)
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Fig. 8 Trajectory of particles (vertical section)

The existence of the gravity acceleration seems to be the reason of no occurrence of
the spiral in motion of the particle. '

On comparing with each pathline near the center of the spiral, the figures of pathlines
are different. Each pathline compared with the standard pathline is shown in Fig. 9. The
trajectory of particles seems to be under influences of the gravity force and the size of the
particle.

0=1.0,t,=10.0

0=0.96,t,=0.7
0=0.96 > t*=0. 3

Fig. 9 Comparison with pathlines near the center of spin motion

In order to compare with the spiral motion of particles in the same manner as the
horizontal section, we investigate the relation between the spiral motion of the particle and
t,. The spin count ratio changes by the difference in the size and the density of particles
as shown in Fig. 10.

When we arrange the result of the spin count ratio and t,, the relation between the
spin count ratio and the settling velocity U is obtained as shown in Fig. 11. The spin
count ratios of the particles with the heavy specific weight (¢6>1) and the light one (0<1)

overlap respectively.
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Fig. 10 Spin count of the motion of particle (vertical section)

(iii) Vertical section of upward flow

In order to confirm the Basset term and the relation as shown in Fig. 11, numerical
experiment of the particle motion is tried in the upward flow. The velocity vector and the
standard pathline of the particle (0=1) are shown in Fig. 12 and 13(a), respectively. The
fluid flows out from inside to outside of the eddy flow, and the all calculated pathlines of
the particle having different density and radius represent the spiral out motion such as 3.(ii).
Several examples are shown in Fig. 13(b), (c), (d) and (e).

In the case of the particle which the specific weight is greater than the fluid (6=2.65),
the pathline is traced downward by the influence of the weight of the particle as shown in
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Fig. 11 Relation between |Us| and spin count ratio
(vertical section)



45

Fig. 13(f). On the other hand, the pathline of the light particle (0=0.5) with the comparative

large radius is traced directly upward as shown in Fig. 13(g).
In such pathlines of particles with the large radius, there are remarkable differences

of pathlines by the presence of the Basset term. For example, on comparing Fig. 13(h) with

Fig. 13(i), the difference of pathlines is confirmed.

In the same way described above, the relations among the spiral motion, t, and Ug
are shown in Fig. 14 and Fig. 15, respectively. When the absolute value of Uy is greater
than 0.6, the deviation of the spin count ratio is produced by the difference of the specific

weight.
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Fig. 12 Flow pattern
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4. Conclusion
The results in numerical experiments of the particle motion are summarized as follows.

0y
09

3)

4)

)

By the theoretical solution derived from the method of successive approximation,
we can grasp the characteristics of the particle motion.

By the presence of the Basset term, the pathlines of the spiral motion are different.
Especially, it is remarkable in the case of the comparative large radius of particles.
The particles in the following condition seem to be suitable for tracer particles in
the flow visualization. :

©) t_>5.0 in the horizontal section (referring 3. (i) ).

@ [Us1<0.05 in the vertical section (referring 3. (ii) ).

(® |Us<0.6 in the vertical section of the upward flow (referring 3. (iii) ).

In the horizontal section without the gravity force, the spiral in and out motion of
particles occur in the case of which the specific weight of the particle is lighter.

On comparing with each pathline near the center of the spiral, the figures of pathline
are different under influences of the gravity force and the size of the particle.

The problem of how to deal with the motion of particles in the unsteady flow hereafter

still remains. Further a study will be needed for the motion of a group of pzfrticles.
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