アミノピリンの水酸化:ラットにおける3 位水酸化体の代謝生成に関する研究

井口 定男,田中 哲郎,金尾 義治,五郎丸 毅*

Journal of Pharmacobio-Dynamics, 7 (9), 702-705 (1984)

Biohydroxylation of Aminopyrine: Quantitative Studies of 3-Hydroxymethyl Metabolite in Rats

Sadao IGUCHI, Tetsuro TANAKA, Yoshiharu KANEO, and Tsuyoshi GOROMARU*

ABSTRACT Significance of the formation of 4-dimethyl-amino-3-hydroxymethyl-2-methyl-1-phenyl-3-pyrazolin-5-one (AM-3-CH₂OH) for the metabolism of aminopyrine (AM) was examined quantitatively in rats. Although urinary excretion of AM-3-CH₂OH accounted for only 0.7% to the dose, incubation of AM in the isolated hepatocyte system resulted in the formation of 9% of AM-3-CH₂OH. Furthermore, metabolic disappearance of AM-3-CH₂OH in the same system was fast, indicating the properties of an intermediate metabolite. These results suggested that the metabolic pathways via AM-3-CH₂OH are very important in the metabolism of aminopyrine.

抄録 アミノピリン代謝における 3 位水酸化体 4-dimethylamino-3-hydroxymethy 1 2-methyl-1-phenyl-3-pyrazoline-5-one (AM-3- CH_2 OH)の意義について検討した。AM-3- CH_2 OH はアミノピリン投与後尿中には投与量の僅か 0.7% しか排泄されない。ところが遊離肝細胞系を用いたマスバランス実験ではその生成は全体の 9%にも上った。遊離肝細胞系において,AM-3- CH_2 OH はさらに代謝されて消失する。このことよりアミノピリンの代謝において 3 位の水酸化体を経由するものは少くなく,AM-3- CH_2 OH は中間代謝物として極めて重要なものであることが明らかとなった。

* Faculty of Pharmaceutical Sciences, Tokushima University 徳島大学薬学部