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Abstract We investigate integrability of (A4, B)-superharmonic functions.

§1. Introduction and Preliminaries

Let  be a domain in RV (N > 2). As in [MO1], [MO2] and [MO3)] we assume that
A: QxRN - RY and B : © x R — R satisfy the following conditions for 1 < p < co and
a weight w which is p-admissible in the sense of [HKM]:

(A.1) =~ A(z,€) is measurable on Q for every £ € RY and £ — A(z, £) is continuous for
ae r€Q;

(A2) A(z,€)-€> oaqw()|ElP for all £ € RY and a.e. z € ) with a constant a; > 0;
(A.3) |A(z,8)] < apw(z)|¢|P~! for all £ € RN and a.e. € Q with a constant ay > 0;
(A4) (A(z,&) — A(z,&)) - (61— &) > 0 whenever &, & € RN, £ # &, for ace. 7 € O

(B.1) z > B(z,t) is measurable on 2 for every t € R and ¢ — B(z,t) is continuous for a.e.
z €Q;

(B.2) For any open set D & £, there is a constant a3(D) > 0 such that |B(z,t)] <
az(D)w(z)(|tP~' + 1) for all t € R and a.e. z € D;

(B.3) tw~— B(z,t) is nondecreasing on R for a.e. z € .

We consider elliptic quasi-linear equations of the form .
(E) —div A(z, Vu(z)) + B(z, u(z)) =0

on a domain 2.

For the nonnegative measure p : du(x) = w(x)dz and an open set €2, we consider the
weighted Sobolev spaces HYP(; 1), HyP (€ 1) and HP(Q; 1) (see [HKM] for details).

loc

Let Q be an open subset of Q. u € HL?(; 1) is said to be a (weak) solution of (E) in Q

loc

if
LA(&:, Vu) - Vodz + /QB(x,u)wdx =0
for all p € CP(Q). u € HyP(; ) is said to be a supersolution (resp. subsolution) of (E) in
Qif
/Q.A(SU, Vu)-Vodz + /QB(;L',u)go dr >0 (resp. < 0)
for all nonnegative ¢ € C§°(2) .

A continuous solution of (E) in Q is called (A, B)-harmonic in 2.
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A function v : @ - R U {oo} is said to be (A, B)-superharmonic in Q if it is lower
semicontinuous, finite on a dense set in U and, for each open set G € Q2 and for h € C(G)
which is (A, B)-harmonic in G, v > h on 0G implies v > h in G. (A, B)-subharmonic
functions are similarly defined.

Suppose that G is an open subset in 2. Let u be a function in G such that min(u, k) €
H, llof (G; ) for all nonnegative integers k. Then we define

Du = lim V min(x, k).

k—o00

The purpose of the present paper is to investigate integrability of (A, B)-superharmonic
functions. That is, we establish the following theorem

Theorem  Suppose that G is an open subset in Q. If u is a nonnegative (A, B)-

superharmonic function, then w € L] (G;u) and Du € L%f_l)(G; i) whenever 0 < v <
»(p—1) and

np
x(p—1)+1’
where 3 > 1 is the exponent of the Sobolev inequality.

0<qg<

First, following the discussion in [MZ], in which the unweighted case, namely the case
w = 1, is treated, we will show the weak Harnack inequality for supersolutionsof (E). Next,
in the same manner as in [HKM)], in which the case B =0 in (E) is treated, we will discuss
integrability of (A, B)-superharmonic functions.

§2. Proof of Theorem

In this section, we will show the integrability of (4, B)-superharmonic functions. For this,
we first show the weak Harnack inequality for supersolutions of (E).

Let u be a nonnegative supersolution of (E) in Q and B(r) = B(z,r) be a ball with
B(r) € Q. We set & = u+ r. Thus, if n € C°(B) is nonnegative, then ¢(z) = nPu’ €
H,?(B; ) for any real value of . Moreover,

|B(2,u)| < 2a3(B(r))wmax(1,1/rP~ 1)@l
We set o4(B(r)) = 2a3(B(r)) max(1,1/rP71).

Lemma Suppose that G is an open set with G @ 2 and B(r) := B(z,r) € G. Ifu is
a nonnegative supersolution of (E) in G, then, for any o, T € (0,1), there exists a constant
¢ = ¢(N,p, a1, a0,03(G),r,7,0,7) > 0 such that

1/
(/ u” d,u) <ec (ess inf u+ r)
B(z,or) B(x,'rr)

whenever 0 < v < »(p — 1), where 3 > 1 is the exponent in the Sobolev inequality.

PrOOF. Let F :(0,00) — R be a smooth nonincreasing function, n € C§*(B(r)) be
nonnegative, 7 := u + r and ¢ := F(u)n?. Then, since

Vo = 9P F'(v)Vu + pF(u)n? 'V,
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we have

Az, Vu) - (F'(uw)?*Vu + pF ()P~ V) dz + B(z,u)F(u)p’dz > 0.
B(r) B(r)

From (A.2), (A.3) and (B.2) it follows that
o [ VPP @IP e < pas [ VAR da
B(r) v B(r)
+as(G) [ (P + DF ()P
B(r)

Setting F(u) = u° (8 < 0), since F'(u) = BuP~!, we have

(1)  o|pf] / \VulPa? 1P du < pag/ |VulP~ Y\ Vn|@PnP "t dp + o I dp.
B(r) B(r) B(r)

where of = o4(G). By Young’s inequality, for any § > 0,
-1 1
|VulP | V@it < 5_p/(p‘1)z)—|Vu|”Hﬂ‘ln” + P = |Vp|PaPtA-L.
p p
Hence, by (1)

(2)  aldl |VulPa? P dp < (p~1)a25~p/(p—l)/ )Ivulpuﬁ—ln])du
B(r) B(r

+azd? / |V PaPP =1 du + o / PP dy.
B(r) B(r)

Now choose § > 0 so that

where ¢ = ¢(p, a1, a2). Thus, by (2) we have

) [ wapwpdn < clo [ vapwt
B(r) B(r)

oy [,
B(r)
where ¢ = ¢ (p, a1, ag). Set

_Jw ifpg=p+B-1,08#1-p
YT logu if B=1-p.

If B#1—p, by (3) we have

@) [ < 2elgrlare [ vape dacslapiel e | v
B(r) B(r) B(r)

< claP@ 18 / (F + [VnfPY? dp,

B(r)
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where ¢ = ¢ (p, a1, ao, a3(G), 7). If 3 =1 — p, by (3) we have
5 | weewduse [ opeivards
B(r) B(r)
where ¢ = ¢ (p, a1, a2, a3(G), ). If § # 1 — p, the Sobolev inequality and (4) yield

( m /IB(T)(UU)KP dp) Hop <c,r (m /B(T) V)P d/,L)l/p

<26, (B [

B(r)

1/p
(P |V + [VaPo?) du)

1/p
<cr{u(B(r)} (lql”(1+ Iﬁl‘l)”/B( )(77”+|V77lp)v” du+/B()|an”v” du) :

Thus,

1/xp e .
) (/B (r)(nv)"”du) < er {u(BE)YF 1+ 1) + 1517

1/p
. ( [ wpioapyw du) ,
B(r)
where ¢ = ¢ (p, , a2, 3,7, ¢4).

Let 0 < ' < h < r and n € C§°(B(h)) be chosen so that n =1 on B(h'),0 <n < 1lin
B(h) and |Vn| < 3(h — h')"!. Then, since n <1 < r(h— A')7L, (6) yields

1/»p 15
(7) (/ v du) < cr {u(B(h))} = {max(3,7)}(h — K)"' (1 + lg)(1 + 87"
B(K')

1/p
X (/ vP du) )
B(h)

Set s:=pg=p+ [ —1. If s >0, by (7) we have

1 xs 1—
(8) (/};(h’)ﬂ”s du) < ler {p(B(R)} = {max(3,r)}(h — k)1 (1 + s)(1 + |BI™)]P/®

1/s
(fre)”
B(h)

where ¢ = c(p, a1, a,03(G), h,c,). If s < 0, we have |3| > |1 — p| = p— 1, so that
|87t < (p—1)"1. Hence, if s < 0, from (7) we obtain

1/3es
e du T )} % {max(3,r A ) L
) ([, ) = ler (B mas(s, )~ 171 = )

1/s
X </ u® du) .
B(R)
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Let 0 <y < x(p—1). Fix j =1,2,... Setting s; =»* 7~y (i=1,2,...,j +1), for any
1=0,1,2,...,7 we have
Bl=lsi—(p-1|=p-1-TLsi>p-1-L >0
Py »

Hence, we have
_ AN
< (p1-2)"
V4
Also, setting
h.i = T{O' + 2—1(1 — 0')} and h: = hi+1,
since s; < 7, by (8) we have

1/3esi L
(—/B(h. )Uusu du) < ler {u(B(h:))} = {max(3,7)}(h; — hip1) " (1 + )P/

1/s;
X (/ i du) ,
B(h;)

where ¢ = ¢ (p, a1, a3, a3(G), 7, ¢, 7). Thus we obtain from the iteration

e 1—» J 1 J i
(/ ‘d"du) < [e{u(B()} = {max(3,7)}(1 — o) (14 )P =m0 w2 =m0

1/80
X (/ e d,u) ,
B(r)
that is, for any sp € {377 'v:j=1,2,...}

1/v 1/s0
(10) (/ Wdy) <c (/ a®° d,u) ,
B(or) B(r)

where ¢ = ¢ (p, o, 0, a3(G), 7, ¢4,7,0,7,50). By Holder’s inequality, the above inequality
holds for any sg > 0.

Also, setting, for any sg > 0, s; = —s*sy and

h; = T{T + Q'i(l — T)} and h,; = h‘i+1)
by (9) we have

I/xsi 1=z
(/ w du) > [er {n(B(r)} = {max(3,m)}(hi — hup) {1 + (=) } />
B(ht+l)

1/s:
X (/ u® du) .
B(h;)

Since 1 — s; = 1 + s'sg < st + 3clsy = (1 + s9)5¢', again we obtain from the iteration

-1 )
(ess sup ﬂ_l) > [c{;L(B(r))}"L;f{max(B, r)}1 = 7)o %‘*{2(1 + so)s P TR0
B(rr)
~1/s0
X (/ w °° d,u) ,
B(r)
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that is,

—1/s0
(11) ess inf uw>c (/ [T du) :
B(7r) B(r)

where ¢ = ¢ (p, a1, @, a3(G), 7, cuy v, 0,7, So).
Finally, we show

1/80 ‘1/30
(12) (/ u®° du) <c (/ u % du) .
B(r) B(r)

Set v = log 4. Let B C B(r) be any ball of radius of h and n € C§°(2B) be so chosen that
n=1on B,0<n<1in2B and |Vn| < 3h~!. Then, (5) yields

/BIVUI” du < ch™u(B)

where we have used r/h > 1 and the doubling property. By using Holder’s inequality and
Poincaré inequality, we have

1/p
/ lv — vp|dp < c{u(B)}P~V/Ph (/ [Vul? du) < cu(B),
B B

where vg = ”—(13—) Jpvdu. Hence v satisfies the hypothesis of the John-Nirenberg lemma.
Therefore, by the John-Nirenberg lemma, there are positive constants sy and ¢y such that

(/Bm edu) /B(,) ) < cof w(B(r))}.

Hence we obtain (12), and by (10), (11) and (12) the proof is complete.

Now, using the above lemma, we give the proof of the theorem.

PROOF OF THEOREM. Let G’ be a polyhedoron such that G’ € G and hg be the
continuous solution of —div.A(z, Vu) + min{B(z,0),0} = 0 in G’ with boundary values 0 on

0G'. By the comparision principle, we see that hg > 0. For k > 0, let ux = min(u, k + ho).
Since

—divA(z, V(k + ho)) + B(z,k + ho) > —div.A(z, Vhy) + min{B(z,0),0} =0
and k + hg is continuous, k + hg is (A, B)-superharmonic in G', and hence so is u. Moreover

since hg is bounded, so is uy, and hence uy is a supersolution of (E) in G'.
Let B = B(z,r) be a ball with 2B C G’. By the lemma, we have

1/
(/ uy du) <c (essi%fuk+r)_<_c (essi%fu+r) < 00
B

whenever 0 < v < »(p — 1) with a constant ¢ independent of k. Hence, letting k — oo, we
have f,u? dp < oo.
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Next, we show the integrability of Du. Let
»p
up—1)+1

Since hg > 0, min(u, k) = u = u; on {u < k}, so that Vmin(u, k) = Vu; ae. on {u < k}.
Hence

O0<g<

/lein(u,k)P(”"l) d‘u:/ |V min(u, k)|7®Y dy
B Bn{u<k}

[ 1w du < [Tl d
Bn{u<k} B

Set Ux = ux + 2. If € > 0, by Hélder’s inequality and (3) in the lemma we have

/IVukP(”'l) du___/|vuk‘Q(p—1)g;(1+6)(P—l)q/pﬁilﬁ)(p—l)q/?d#
B B

(p—1)a/p {p—(p—1)q}/p
< (/ IVukI”ﬁ,gl‘fdu> (/ H£I+E)(P—1)q/{p—q(p—l)} d,u)
B B

(p—1)q/p {p—(p-1)g}/p
¢ </ 'ﬁ’;_l_sdu> (/ u£1+€)(p—l)<1/{p—q(p—l)} du)
2B B

(p—1)g/p {(p-(p-1)q}/p
<c (/ (u+ 27‘)p—1~6d,u> (/ (u 4 2r) 1+ -Da/{p—a(p-1)} d,u) .
2B B

Now choose ¢ so that 0 <& < p~1 and

(1+e)(p—1)g
FErTEn R

Thus, the integrability of u implies the integrability of Du.

IN
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